Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:02:57.480Z Has data issue: false hasContentIssue false

An Iterative Monte Carlo Scheme for Generating Lie Group-Valued Random Variables

Published online by Cambridge University Press:  01 July 2016

Mauro Piccioni*
Affiliation:
Università di L'Aquila
Sergio Scarlatti*
Affiliation:
Università di L'Aquila
*
* Postal address: Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, 67100 L'Aquila, Italy.
* Postal address: Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, 67100 L'Aquila, Italy.

Abstract

In this paper a simple approximation scheme is proposed for the problem of generating and computing expectations of functionals of a wide class of random variables with values in a compact Lie group. The algorithm is suggested by the time-discretization of an ergodic diffusion leaving invariant the distribution of interest. It is shown to converge as the discretization step goes to zero with the iterations in a natural way.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by 40% MURST Processi Stocastici e Calcolo Stocastico.

References

[1] Amit, Y. (1989) A multiflow approximation to diffusion. Stoch. Proc. Appl. 37, 213238.Google Scholar
[2] Amit, Y., Grenander, U. and Miller, M. (1993) Jump-diffusion processes for abduction and recognition of biological shapes. Technical Report 361, Department of Statistics, University of Chicago.Google Scholar
[3] Amit, Y. and Piccioni, M. (1991) A non homogeneous Markov process for the estimation of Gaussian random fields with non linear observations. Ann. Prob. 19, 16641678.CrossRefGoogle Scholar
[4] Ben Arous, G. (1989) Flots et series de Taylor stochastiques. Prob. Theory Rel. Fields 81, 2977.Google Scholar
[5] Bonetti, M. and Piccioni, M. (1992) Deformable templates: a statistical approach. In Pattern Recognition, ed. Bischof, H. and Kropatsch, W. G., Wien.Google Scholar
[6] Castell, F. (1993) Asymptotic expansion of stochastic flows. Prob. Theory Rel. Fields 96, 223239.Google Scholar
[7] Deuschel, J. D. and Stroock, D. (1992) Large Deviations. Academic Press, Boston.Google Scholar
[8] Ethier, S. and Kurtz, T. S. (1986) Markov Processes: Characterization and Convergence. Wiley, New York.Google Scholar
[9] Gaines, J. G. and Lyons, T. J. (1993) Random generation of stochastic area integrals. Preprint.Google Scholar
[10] Geman, D. (1991) Random Fields and Inverse Problem in Imaging. Lecture Notes in Mathematics 1427, Springer-Verlag, Berlin.Google Scholar
[11] Geman, D. and Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367383.CrossRefGoogle Scholar
[12] Geyer, C. J. (1992) Practical Markov chain Monte-Carlo. Statist. Sci. 7, 473483.Google Scholar
[13] Georgii, H. O. (1988) Gibbs Measures and Phase Transitions. de Gruyter, Berlin, 1988.Google Scholar
[14] Grenander, U. (1976) Lectures in Pattern Theory, Vol. 1. Springer-Verlag, Berlin.Google Scholar
[15] Grenander, U., Chow, Y. and Keenan, D. M. (1991) Hands: a pattern theoretic study of biological shapes. Res. Notes Neural Comput. 2.Google Scholar
[16] Hwang, C. R., Hwang-Ma, S.-Y. and Sheu, S.-J. (1993) Accelerating gaussian diffusions. Ann. Appl. Prob. 3, 897913.Google Scholar
[17] Ikeda, N. and Watanabe, S. (1988) Stochastic Differential Equations and Diffusion Processes. North-Holland Kodansha, Tokyo.Google Scholar
[18] Kloeden, P. and Platen, E. (1992) Numerical Solutions of Stochastic Differential Equations. Springer-Verlag, Berlin.Google Scholar
[19] Mckean, H. P. Jr. (1969) Stochastic Integrals. Academic Press, New York.Google Scholar
[20] Norman, F. R. (1977) Ergodicity of diffusion and temporal uniformity of diffusion approximation. J. Appl. Prob. 14, 399404.CrossRefGoogle Scholar
[21] Richtmeyer, R. D. and Morton, K. W. (1967) Difference Methods for Initial Value Problems. Wiley Interscience, New York.Google Scholar
[22] Robinson, D. W. (1991) Elliptic Operators and Lie Groups. Oxford University Press.Google Scholar
[23] Roth, J. P. (1978) Les operateurs elliptiques comme generateurs infinitesimaux de semigroupes de Feller. Lecture Notes in Mathematics 681, Springer-Verlag, Berlin.Google Scholar
[24] Smith, A. F. M. and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte-Carlo methods J. R. Statist. Soc. B55, 324.Google Scholar
[25] Talay, D. (1990) Second order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep. 29, 1336.Google Scholar