Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T20:35:06.006Z Has data issue: false hasContentIssue false

Rough descriptions of ruin for a general class of surplus processes

Published online by Cambridge University Press:  01 July 2016

Harri Nyrhinen*
Affiliation:
University of Helsinki
*
Postal address: Rolf Nevanlinna Institute, P.O. Box 4, FIN-00014 University of Helsinki, Finland. Email address: harri@pohjola.memonet.fi

Abstract

Let {Yn | n = 1, 2,…} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n | Yn > M} (T = +∞ if YnM for n = 1, 2,…). Using the techniques of large deviations theory we obtain rough exponential estimates for ruin probabilities for a general class of processes. Special attention is given to the probability that ruin occurs up to a certain time point. We also generalize the concept of the safety loading and consider its importance to ruin probabilities.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partially supported by the Research Grants Committee of the University of Helsinki.

References

De Acosta, A. (1985). Upper bounds for large deviations of dependent random vectors. Z. Wahrscheinlichkeitsth. 69, 551565.Google Scholar
De Acosta, A., Ney, P. and Nummelin, E. (1991). Large deviation lower bounds for general sequences of random variables. In Random Walks, Brownian Motion, and Interacting Particle Systems, ed. Durrett, R. and Kesten, H. (Progr. Prob. 28,). Birkhäuser, Boston, pp. 215221.Google Scholar
Asmussen, S. (1989). Risk theory in a Markovian environment. Scand. Actuarial J. 89, 69100.Google Scholar
Asmussen, S. and Klüppelberg, C. (1996). Large deviations results for subexponential tails, with applications to insurance risk. Stoch. Proc. Appl. 64, 103125.CrossRefGoogle Scholar
Björk, T. and Grandell, J. (1988). Exponential inequalities for ruin probabilities in the Cox case. Scand. Actuarial J. 88, 77111.Google Scholar
Burton, R. M. and Dehling, H. (1990). Large deviations for some weakly dependent random processes. Statist. Prob. Lett. 9, 397401.CrossRefGoogle Scholar
Cramér, H., (1955). Collective Risk Theory. Jubilee volume of Försäkringsbolaget Skandia, Stockholm.Google Scholar
Daykin, C. D., Pentikäinen, T. and Pesonen, M. (1994). Practical Risk Theory for Actuaries. Chapman & Hall, London.Google Scholar
Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston.Google Scholar
Djehiche, B. (1993). A large deviation estimate for ruin probabilities. Scand. Actuarial J. 93, 4259.Google Scholar
Ellis, R. S. (1984). Large deviations for a general class of random vectors. Ann. Prob. 12, 112.Google Scholar
Embrechts, P., Grandell, J. and Schmidli, H. (1993). Finite-time Lundberg inequalities in the Cox case. Scand. Actuarial J. 93, 1741.Google Scholar
Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. 2, 2nd edition. Wiley, New York.Google Scholar
Furrer, H. J. and Schmidli, H. (1994). Exponential inequalities for ruin probabilities of risk processes perturbed by diffusion. Insurance: Math. Econ. 15, 2336.Google Scholar
Gärtner, J., (1977). On large deviations from the invariant measure. Theory Prob. Appl. 22, 2439.Google Scholar
Gerber, H. U. (1982). Ruin theory in the linear model. Insurance: Math. Econ. 1, 177184.Google Scholar
Glynn, P.W. and Whitt., W. (1994). Large deviations behavior of counting processes and their inverses. Queueing Systems 17, 107128.Google Scholar
Grandell, J. (1991). Aspects of Risk Theory. Springer, Berlin.Google Scholar
Iscoe, I., Ney, P. and Nummelin, E. (1985). Large deviations of uniformly recurrent Markov additive processes. Adv. Appl. Math. 6, 373412.Google Scholar
Klüppelberg, C. and Mikosch, T. (1997). Large deviations of heavy-tailed random sums with applications to insurance and finance. J. Appl. Prob. 34, 293308.CrossRefGoogle Scholar
Lalley, S. P. (1984). Limit theorems for first-passage times in linear and non-linear renewal theory. Adv. Appl. Prob. 16, 766803.Google Scholar
Lehtonen, T. and Nyrhinen, H. (1992). Simulating level-crossing probabilities by importance sampling. Adv. Appl. Prob. 24, 858874.CrossRefGoogle Scholar
Lehtonen, T. and Nyrhinen, H. (1992). On asymptotically efficient simulation of ruin probabilities in a Markovian environment. Scand. Actuarial J. 92, 6075.CrossRefGoogle Scholar
Martin-Löf, A., (1983). Entropy estimates for ruin probabilities. In Probability and Mathematical Statistics, ed. Gut, A. and Holst, L., Dept. of Mathematics, Uppsala University, pp. 129139.Google Scholar
Martin-Löf, A., (1986). Entropy, a useful concept in risk theory. Scand. Actuarial J. 86, 223235.CrossRefGoogle Scholar
Ney, P. and Nummelin, E. (1987). Markov additive processes I. Eigenvalue properties and limit theorems. Ann. Prob. 15, 561592.Google Scholar
Nummelin, E. (1986). Lecture series on large deviations theory. Helsinki University.Google Scholar
Nyrhinen, H. (1994). Rough limit results for level-crossing probabilities. J. Appl. Prob. 31, 373382.Google Scholar
Nyrhinen, H. (1995). On the typical level crossing time and path. Stoch. Proc. Appl. 58, 121137.Google Scholar
Pentikäinen, T., Bonsdorff, H., Pesonen, M., Rantala, J. and Ruohonen, M. (1989). Insurance Solvency and Financial Strength. Finnish Insurance Training and Publishing Company, Helsinki.Google Scholar
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Schmidli, H. (1995). Cramér–Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion. Insurance: Math. Econ. 16, 135149.Google Scholar
Schmidli, H. (1996). Lundberg inequalities for a Cox model with a piecewise constant intensity. J. Appl. Prob. 33, 196210.Google Scholar
Siegmund, D. (1975). The time until ruin in collective risk theory. Mitt. der Verein. schweitz. Vers. Mathematiker, 75, 157165.Google Scholar
Slud, E. and Hoesman, C. (1989). Moderate- and large-deviation probabilities in actuarial risk theory. Adv. Appl. Prob. 21, 725741.Google Scholar
Tiefeng, J. (1994). Large deviations for renewal processes. Stoch. Proc. Appl. 50, 5771.Google Scholar