Published online by Cambridge University Press: 01 July 2016
We derive results that show the impact of aggregation in a queueing network. Our model consists of a two-stage queueing system where the first (upstream) queue serves many flows, of which a certain subset arrive at the second (downstream) queue. The downstream queue experiences arbitrary interfering traffic. In this setup, we prove that, as the number of flows being aggregated in the upstream queue increases, the overflow probability of the downstream queue converges uniformly in the buffer level to the overflow probability of a single queueing system obtained by simply removing the upstream queue in the original two-stage queueing system. We also provide the speed of convergence and show that it is at least exponentially fast. We then extend our results to non-i.i.d. traffic arrivals.
This work has been partly supported by NSF grant number ANI-0099137.