Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T15:48:40.759Z Has data issue: false hasContentIssue false

The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane

Published online by Cambridge University Press:  01 July 2016

Pierre Calka*
Affiliation:
Université Claude Bernard Lyon 1
*
Postal address: Université Claude Bernard Lyon 1, LaPCS, Bâtiment B, Domaine de Gerland, 50 avenue Tony-Garnier, F-69366 Lyon Cedex 07, France. Email address: pierre.calka@univ-lyon1.fr

Abstract

Among the disks centered at a typical particle of the two-dimensional Poisson-Voronoi tessellation, let Rm be the radius of the largest included within the polygonal cell associated with that particle and RM be the radius of the smallest containing that polygonal cell. In this article, we obtain the joint distribution of Rm and RM. This result is derived from the covering properties of the circle due to Stevens, Siegel and Holst. The same method works for studying the Crofton cell associated with the Poisson line process in the plane. The computation of the conditional probabilities P{RMr + s | Rm = r} reveals the circular property of the Poisson-Voronoi typical cells (as well as the Crofton cells) having a ‘large’ in-disk.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Baccelli, F. and Błaszczyszyn, B. (2001). On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications. Adv. Appl. Prob. 33, 293323.Google Scholar
[2] Calka, P. (2001). Mosaïques poissoniennes de l'espace euclidien. Une extension d'un résultat de R. E. Miles. C. R. Acad. Sci. Paris I 332, 557562.CrossRefGoogle Scholar
[3] Foss, S. G. and Zuyev, S. A. (1996). On a Voronoi aggregative process related to a bivariate Poisson process. Adv. Appl. Prob. 28, 965981.Google Scholar
[4] Gilbert, E. N. (1962). Random subdivisions of space into crystals. Ann. Math. Statist. 33, 958972.Google Scholar
[5] Goldman, A. (1996). Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien. Prob. Theory Relat. Fields 105, 5783.Google Scholar
[6] Goldman, A. (1998). Sur une conjecture de D. G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. Ann. Prob. 26, 17271750.CrossRefGoogle Scholar
[7] Goldman, A. and Calka, P. (2001). Sur la fonction spectrale des cellules de Poisson–Voronoi. C. R. Acad. Sci. Paris I 332, 835840.Google Scholar
[8] Goudsmit, S. (1945). Random distribution of lines in a plane. Rev. Modern Phys. 17, 321322.Google Scholar
[9] Huffer, F. W. and Shepp, L. A. (1987). On the probability of covering the circle by random arcs. J. Appl. Prob. 24, 422429.Google Scholar
[10] Kovalenko, I. N. (1999). A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301310.CrossRefGoogle Scholar
[11] Kumar, S. and Singh, R. N. (1995). Thermal conductivity of polycrystalline materials. J. Amer. Ceramics Soc. 78, 728736.CrossRefGoogle Scholar
[12] Meijering, J. L. (1953). Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8, 270290.Google Scholar
[13] Miles, R. E. (1964). Random polygons determined by random lines in a plane. Proc. Nat. Acad. Sci. USA 52, 901907.CrossRefGoogle ScholarPubMed
[14] Miles, R. E. (1964). Random polygons determined by random lines in a plane. II. Proc. Nat. Acad. Sci. USA 52, 11571160.CrossRefGoogle Scholar
[15] Miles, R. E. (1973). The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10, 256290.Google Scholar
[16] Möller, J., (1994). Lectures on Random Voronoi Tessellations (Lecture Notes Statist. 87). Springer, New York.Google Scholar
[17] Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, Chichester.Google Scholar
[18] Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley, Chichester.Google Scholar
[19] Paroux, K. (1998). Quelques théorèmes centraux limites pour les processus poissoniens de droites dans le plan. Adv. Appl. Prob. 30, 640656.CrossRefGoogle Scholar
[20] Pielou, E. (1977). Mathematical Ecology. Wiley–Interscience, New York.Google Scholar
[21] Shepp, L. A. (1972). Covering the circle with random arcs. Israel J. Math. 11, 328345.Google Scholar
[22] Siegel, A. F. (1978). Random space filling and moments of coverage in geometrical probability. J. Appl. Prob. 15, 340355.Google Scholar
[23] Siegel, A. F. and Holst, L. (1982). Covering the circle with random arcs of random sizes. J. Appl. Prob. 19, 373381.Google Scholar
[24] Solomon, H. (1978). Geometric Probability (Conf. Board Math. Sci.—Regional Conf. Ser. Appl. Math. 28). Society for Industrial and Applied Mathematics, Philadelphia, PA.Google Scholar
[25] Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. John Wiley, Chichester.Google Scholar
[26] Van de Weygaert, R. (1994). Fragmenting the universe III. The construction and statistics of 3-D Voronoi tessellations. Astron. Astrophys. 283, 361406.Google Scholar