Published online by Cambridge University Press: 01 July 2016
In this paper, some results on the asymptotic behavior of Markov renewal processes with auxiliary paths (MRPAP's) proved in other papers ([28], [29]) are applied to queueing theory. This approach to queueing problems may be regarded as an improvement of the method of Fabens [7] based on the theory of semi-Markov processes. The method of Fabens was also illustrated by Lambotte in [18], [32]. In the present paper the ordinary M/G/1 queue is generalized to allow service times to depend on the queue length immediately after the previous departure. Such models preserve the MRPAP-structure of the ordinary M/G/1 system. Recently, the asymptotic behaviour of the embedded Markov chain (MC) of this queueing model was studied by several authors. One aim of this paper is to answer the question of the relationship between the limiting distribution of the embedded MC and the limiting distribution of the original process with continuous time parameter. It turns out that these two limiting distributions coincide. Moreover some properties of the embedded MC and the embedded semi-Markov process are established. The discussion of the M/G/1 queue closes with a study of the rate-of-convergence at which the queueing process attains equilibrium.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.