Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T12:49:19.702Z Has data issue: false hasContentIssue false

Equivalent a Posteriori Error Estimator of Spectral Approximation for Control Problems with Integral Control-State Constraints in One Dimension

Published online by Cambridge University Press:  27 January 2016

Fenglin Huang
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
Yanping Chen*
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
Xiulian Shi
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
*
*Corresponding author. Email: hfl_937@sina.com (F. L. Huang), yanpingchen@scnu.edu.cn (Y. P. Chen), pgny@163.com (X. L. Shi)
Get access

Abstract.

In this paper, we investigate the Galerkin spectral approximation for elliptic control problems with integral control and state constraints. Firstly, an a posteriori error estimator is established,which can be acted as the equivalent indicatorwith explicit expression. Secondly, appropriate base functions of the discrete spacesmake it is probable to solve the discrete system. Numerical test indicates the reliability and efficiency of the estimator, and shows the proposed method is competitive for this class of control problems. These discussions can certainly be extended to two- and three-dimensional cases.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bergounioux, M. and Kunisch, K., Primal-dual strategy for state-constrained optimal control problems, Comput. Optim. Appl., 22 (2002), pp. 193224.Google Scholar
[2]Bergounioux, M. and Kunisch, K., On the structure of Lagrange multipliers for state-constrained optimal control problems, Systems. Control Lett., 48 (2003), pp. 169176.Google Scholar
[3]Bergounioux, M. and Kunisch, K., Augmented Lagrangian techniques for elliptic state constrained optimal control problems, SIAM J. Control Optim., 35 (1997), pp. 15241543.Google Scholar
[4]Casas, E., Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM J. Control Optim., 31(4) (1993), pp. 9931006.Google Scholar
[5]Casas, E., Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM, Contr. Optim. Calc. Var., 8 (2002), pp. 345374.Google Scholar
[6]Casas, E., Control of an elliptic problem with pointwise state constraints, SIAM J. Control.Optim., 24(6) (1986), pp. 13091318.Google Scholar
[7]Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.Google Scholar
[8]Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods, Fundamentals in Single Domains, Springer, Heidelberg, 2006.CrossRefGoogle Scholar
[9]Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer, Heidelberg, 2007.Google Scholar
[10]Cherednichenko, S. and Rösch, A., Error estimates for the discretization of elliptic control problems with pointwise control and state constraints, Comput. Optim. Appl., 44(1) (2009), pp. 2755.Google Scholar
[11]Chen, Y., Yi, N., and Liu, W. B., A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(5) (2008), pp. 22542275.Google Scholar
[12]Chen, Y., Huang, F., Yi, N., and Liu, W. B., A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations, SIAM J. Numer. Anal., 49(4) (2011), pp. 16251648.Google Scholar
[13]De Los Reyes, J. C. and Griesse, R., State-constrained optimal control of the three-dimensionl stationary Navier-Stokes equations, J. Math. Anal. Appl., 343 (2008), pp. 257272.CrossRefGoogle Scholar
[14]De Los Reyes, J. C. and Tröltzsch, F., Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints, SIAM J. Control Optim., 46(2) (2007), pp. 604629.Google Scholar
[15]Gunzburger, M. D. and Hou, L. S., Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), pp. 10011043.Google Scholar
[16]Gong, W. and Yan, N., A mixed finite element scheme for optimal control problems with pointwise state constraints, J. Sci. Comput., 46 (2011), pp. 182203.Google Scholar
[17]Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S., Optimization with PDE Constraints, Springer-Verlag, New York, 2009.Google Scholar
[18]Hintermüller, M., and Kunisch, K., Stationary optimal control problems with pointwise state constraints, Numerical PDE Constrained Optimization, Lecture Notes in Computational Science and Engineering, Vol. 72, 2009.Google Scholar
[19]Hoppe, R. H. W. and Kieweg, M., A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems, J. Numer. Math., 17(3) (2009), pp. 219244.Google Scholar
[20]Hoppe, R. H. W. and Kieweg, M., Adaptive finite element methods for mixed control-state con- strained optimal control problems for elliptic boundary value problems, Comput. Optim. Appl., 46 (2010), pp. 511533.Google Scholar
[21]Ito, K. and Kunisch, K., Semi-smooth Newton methods for state-constrained optimal control problems, Systems. Control Lett., 50(3) (2003), pp. 221228.Google Scholar
[22]Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.CrossRefGoogle Scholar
[23]Liu, W. B., Yang, D. P., Yuan, L., and Ma, C. Q., Finite elemtnt approximations of an optimal control problem with integral state constraint, SIAM J. Numer. Anal., 48(3) (2010), pp. 11631185.CrossRefGoogle Scholar
[24]Liu, W. B. and Yan, N., Adaptive finite Element methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.Google Scholar
[25]Meidner, Dominik, Rannacher, Rolf, and Vexler, Boris, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time, SIAM J. Control Optim., 49(5) (2011), pp. 19611997.Google Scholar
[26]Maurer, Helmut and Mittelmann, Hans D., Optimization techniques for solving elliptic control problems with control and state constraints, Part 2: Distributed control, Comput. Optim. Appl., 18 (2001), pp. 141160.Google Scholar
[27]Niu, H. F. and Yang, D. P., Finite element analysis of optimal control problem governed by Stokes equations with L2-norm state-constriants, J. Comput. Math., 29(5) (2011), pp. 589604.Google Scholar
[28]Niu, H. F., Yuan, L., and Yang, D. P., Adaptive finite element method for an optimal control problem of Stokes flow with L2-norm state constraint, Int. J. Numer. Meth. Fluids, 69(3) (2012), pp. 534549.Google Scholar
[29]Prüfert, U., Tröltzsch, F., and Weiser, M., The convergence of an interior point method for an elliptic control problem with mixed control-state constraints, Comput Optim Appl., 39(2) (2008), pp. 183218.Google Scholar
[30]Rösch, A. and Tröltzsch, F., Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, SIAM J. Optim., 17(3) (2006), pp. 776794.Google Scholar
[31]Rösch, A. and Tröltzsch, F., Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints, SIAM J. Control Optim., 42(1) (2003), pp. 138154.Google Scholar
[32]Rösch, A. and Tröltzsch, F., Existence of regular Lagrange multipliers for nonlinear Elliptic optimal control problem with pointwise control-state constraints, SIAM J. Control Optim., 45(2) (2006), pp. 548564.Google Scholar
[33]Rösch, Arnd and Wachsmuth, Daniel, A-posteriori error estimates for optimal control problems with state and control constraints, Numer. Math., 120(4) (2012), pp. 733762.Google Scholar
[34]Shen, J., Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15(6) (1994), pp. 14891505.CrossRefGoogle Scholar
[35]Shen, J. and Tang, T., Spectral and high-order methods with applications, Science Press, Beijing, 2006.Google Scholar
[36]Tröltzsch, F., Regular Lagrange multipliers for control problems with mixed pointwise control- state constraints, SIAM J. Optim., 15(2) (2005), pp. 616634.Google Scholar
[37]Yuan, L. and Yang, D. P., A posteriori error estimate of optimal control problem of PDE with integral constraint for state, J. Comput. Math., 27(4) (2009), pp. 525542.Google Scholar
[38]Zhou, J.W. and Yang, D. P., Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88(14) (2011), pp. 29883011.CrossRefGoogle Scholar