Hostname: page-component-76c49bb84f-bg8zk Total loading time: 0 Render date: 2025-07-04T04:13:47.612Z Has data issue: false hasContentIssue false

Ensemble Kalman methods: A mean-field perspective

Published online by Cambridge University Press:  01 July 2025

Edoardo Calvello
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA E-mail: e.calvello@caltech.edu
Sebastian Reich
Affiliation:
Institut für Mathematik, Universität Potsdam, D-14476 Potsdam, Germany E-mail: sebastian.reich@uni-potsdam.de
Andrew M. Stuart
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA E-mail: astuart@caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ensemble Kalman methods, introduced in 1994 in the context of ocean state estimation, are now widely used for state estimation and parameter estimation (inverse problems) in many arenae. Their success stems from the fact that they take an underlying computational model as a black box to provide a systematic, derivative-free methodology for incorporating observations; furthermore the ensemble approach allows for sensitivities and uncertainties to be calculated. Analysis of the accuracy of ensemble Kalman methods, especially in terms of uncertainty quantification, is lagging behind empirical success; this paper provides a unifying mean-field-based framework for their analysis. Both state estimation and parameter estimation problems are considered, and formulations in both discrete and continuous time are employed. For state estimation problems, both the control and filtering approaches are considered; analogously for parameter estimation problems, the optimization and Bayesian perspectives are both studied. As well as providing an elegant framework, the mean-field perspective also allows for the derivation of a variety of methods used in practice. In addition it unifies a wide-ranging literature in the field and suggests open problems.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

References

Abarbanel, H. (2013), Predicting the Future: Completing Models of Observed Complex Systems, Springer.10.1007/978-1-4614-7218-6CrossRefGoogle Scholar
Abdulle, A., Weinan, E., Engquist, B. and Vanden-Eijnden, E. (2012), The heterogeneous multiscale method, Acta Numer. 21, 187.10.1017/S0962492912000025CrossRefGoogle Scholar
Acevedo, W., de Wiljes, J. and Reich, S. (2017), Second-order accurate ensemble transform particle filters, SIAM J. Sci. Comput. 39, A1834A1850.10.1137/16M1095184CrossRefGoogle Scholar
Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D. and Stuart, A. (2017), Importance sampling: Intrinsic dimension and computational cost, Statist. Sci. 32, 405431.10.1214/17-STS611CrossRefGoogle Scholar
Al-Ghattas, O. and Sanz-Alonso, D. (2023), Non-asymptotic analysis of ensemble Kalman updates: Effective dimension and localization, Inform. Inference. 13, 166.Google Scholar
Albers, D. J., Blancquart, P.-A., Levine, M. E., Seylabi, E. E. and Stuart, A. (2019), Ensemble Kalman methods with constraints, Inverse Problems 35, art. 095007.10.1088/1361-6420/ab1c09CrossRefGoogle ScholarPubMed
Ambrosio, L., Gigli, N. and Savaré, G. (2008), Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer.Google Scholar
Amezcua, J., Kalnay, E., Ide, K. and Reich, S. (2014), Ensemble transform Kalman–Bucy filters, Quart . J. R. Meteorol. Soc. 140, 9951004.10.1002/qj.2186CrossRefGoogle Scholar
Anderson, B. D. O. and Moore, J. B. (2012), Optimal Filtering, Courier Corporation.Google Scholar
Anderson, J. L. (2001), An ensemble adjustment Kalman filter for data assimilation, Mon . Weather Rev. 129, 28842903.10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Asch, M., Bocquet, M. and Nodet, M. (2016), Data Assimilation: Methods, Algorithms, and Applications, SIAM.10.1137/1.9781611974546CrossRefGoogle Scholar
Ashwin, P. (2003), Synchronization from chaos, Nature 422(6930), 384385.10.1038/422384aCrossRefGoogle ScholarPubMed
Åström, K. J. and Murray, R. M. (2021), Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press.Google Scholar
Azouani, A., Olson, E. and Titi, E. S. (2014), Continuous data assimilation using general interpolant observables, J. Nonlinear Sci. 24, 277304.10.1007/s00332-013-9189-yCrossRefGoogle Scholar
Bain, A. and Crisan, D. (2008), Fundamentals of Stochastic Filtering , Vol. 60 of Stochastic Modelling and Applied Probability, Springer.Google Scholar
Bergemann, K. and Reich, S. (2010a), A localization technique for ensemble Kalman filters, Quart . J. R. Meteorol. Soc. 136, 701707.10.1002/qj.591CrossRefGoogle Scholar
Bergemann, K. and Reich, S. (2010b), A mollified ensemble Kalman filter, Quart . J. R. Meteorol. Soc. 136, 16361643.10.1002/qj.672CrossRefGoogle Scholar
Bergemann, K. and Reich, S. (2012), An ensemble Kalman–Bucy filter for continuous data assimilation, Meteorol. Z. 21, 213219.10.1127/0941-2948/2012/0307CrossRefGoogle Scholar
Beskos, A., Crisan, D. and Jasra, A. (2014), On the stability of sequential Monte Carlo methods in high dimensions, Ann . Appl. Probab. 24, 13961445.Google Scholar
Beskos, A., Jasra, A., Muzaffer, E. A. and Stuart, A. M. (2015), Sequential Monte Carlo methods for Bayesian elliptic inverse problems, Statist . Comput. 25, 727737.Google Scholar
Bickel, P., Li, B. and Bengtsson, T. (2008), Sharp failure rates for the bootstrap particle filter in high dimensions, in Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Institute of Mathematical Statistics, pp. 318329.Google Scholar
Bishop, A. N. and Moral, P. Del (2019), On the stability of matrix-valued Riccati diffusions, Electron. J. Probab. 24, 140.10.1214/19-EJP342CrossRefGoogle Scholar
Bishop, A. N. and Moral, P. Del (2023), On the mathematical theory of ensemble (linear-Gaussian) Kalman–Bucy filtering, Math. Control Signals Systems 35, 835903.10.1007/s00498-023-00357-2CrossRefGoogle Scholar
Bishop, A. N., Moral, P. Del and Niclas, A. (2020), A perturbation analysis of stochastic matrix Riccati diffusions, Ann . Inst. Henri Poincaré Probab. Statist. 56, 884916.Google Scholar
Bishop, A. N., Moral, P. Del and Pathiraja, S. D. (2018), Perturbations and projections of Kalman–Bucy semigroups, Stoch . Process. Appl. 128, 28572904.10.1016/j.spa.2017.10.006CrossRefGoogle Scholar
Bishop, A. N., Moral, P. Del, Kamatani, K. and Remillard, B. (2019), On one-dimensional Riccati diffusions, Ann . Appl. Probab. 29, 11271187.Google Scholar
Bishop, C. H., Etherton, B. J. and Majumdar, S. J. (2001), Adaptive sampling with ensemble transform Kalman filter, Part I: Theoretical aspects, Mon . Weather Rev. 129, 420436.10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Bishop, C. M. (2011), Pattern Recognition and Machine Learning, second edition, Springer.Google Scholar
Biswas, A. and Branicki, M. (2024), A unified framework for the analysis of accuracy and stability of a class of approximate Gaussian filters for the Navier–Stokes equations, Nonlinearity 37, art. 125013.10.1088/1361-6544/ad805bCrossRefGoogle Scholar
Blömker, D., Law, K., Stuart, A. M. and Zygalakis, K. C. (2013), Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation, Nonlinearity 26, art. 2193.10.1088/0951-7715/26/8/2193CrossRefGoogle Scholar
Blömker, D., Schillings, C. and Wacker, P. (2018), A strongly convergent numerical scheme from ensemble Kalman inversion, SIAM J. Numer. Anal. 56, 25372562.10.1137/17M1132367CrossRefGoogle Scholar
Blömker, D., Schillings, C., Wacker, P. and Weissmann, S. (2022), Continuous time limit of the stochastic ensemble Kalman inversion: Strong convergence analysis, SIAM J. Numer. Anal. 60, 31813215.10.1137/21M1437561CrossRefGoogle Scholar
Bocquet, M. and Sakov, P. (2012), Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlinear Process . Geophys. 19, 383399.Google Scholar
Bocquet, M. and Sakov, P. (2014), An iterative ensemble Kalman smoother, Quart . J. R. Meteorol. Soc. 140, 15211535.10.1002/qj.2236CrossRefGoogle Scholar
Bocquet, M., Brajard, J., Carrassi, A. and Bertino, L. (2020), Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation–maximization, Found . Data Sci. 2, 5580.Google Scholar
Bocquet, M., Gurumoorthy, K. S., Apte, A., Carrassi, A., Grudzien, C. and Jones, C. K. (2017), Degenerate Kalman filter error covariances and their convergence onto the unstable subspace, SIAM/ASA J. Uncertain. Quantif. 5, 304333.10.1137/16M1068712CrossRefGoogle Scholar
Burgers, G., van Leeuwen, P. J. and Evensen, G. (1998), Analysis scheme in the ensemble Kalman filter, Mon . Weather Rev. 126, 17191724.10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Burov, D., Giannakis, D., Manohar, K. and Stuart, A. (2021), Kernel analog forecasting: Multiscale test problems, Multiscale Model. Simul. 19, 10111040.10.1137/20M1338289CrossRefGoogle Scholar
Calvello, E., Monmarché, P., Stuart, A. M. and Vaes, U. (2024), Accuracy of the ensemble Kalman filter in the near-linear setting. Available at arXiv:2409.09800.Google Scholar
Carrillo, J. A., Choi, Y.-P., Totzeck, C. and Tse, O. (2018), An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci. 28, 10371066.10.1142/S0218202518500276CrossRefGoogle Scholar
Carrillo, J. A., Hoffmann, F., Stuart, A. M. and Vaes, U. (2022), Consensus-based sampling, Stud. Appl. Math. 148, 10691140.10.1111/sapm.12470CrossRefGoogle Scholar
Carrillo, J. A., Hoffmann, F., Stuart, A. M. and Vaes, U. (2024), The mean field ensemble Kalman filter: Near-Gaussian setting, SIAM J. Numer. Anal. 62, 25492587.10.1137/24M1628207CrossRefGoogle Scholar
Chada, N. K. and Tong, X. T. (2022), Convergence acceleration of ensemble Kalman inversion in nonlinear settings, Math. Comp. 91, 12471280.Google Scholar
Chada, N. K., Chen, Y. and Sanz-Alonso, D. (2021), Iterative ensemble Kalman methods: A unified perspective with some new variants, Found . Data Sci. 3, 331369.Google Scholar
Chada, N. K., Schillings, C. and Weissmann, S. (2019), On the incorporation of box-constraints for ensemble Kalman inversion, Found . Data Sci. 1, 433456.Google Scholar
Chada, N. K., Stuart, A. M. and Tong, X. T. (2020), Tikhonov regularization within ensemble Kalman inversion, SIAM J. Numer. Anal. 58, 12631294.10.1137/19M1242331CrossRefGoogle Scholar
Chen, J., Jin, S. and Lyu, L. (2022a), A consensus-based global optimization method with adaptive momentum estimation, Commun . Comput. Phys. 31, 12961316.10.4208/cicp.OA-2021-0144CrossRefGoogle Scholar
Chen, Y. and Oliver, D. (2012), Ensemble randomized maximum likelihood method as an iterative ensemble smoother, Math. Geosci. 44, 126.10.1007/s11004-011-9376-zCrossRefGoogle Scholar
Chen, Y., Huang, D. Z., Huang, J., Reich, S. and Stuart, A. M. (2023), Sampling via gradient flows in the space of probability measures. Available at arXiv:2310.03597.Google Scholar
Chen, Y., Sanz-Alonso, D. and Willett, R. (2022b), Autodifferentiable Ensemble Kalman filters, SIAM J. Math. Data Sci. 4, 801833.10.1137/21M1434477CrossRefGoogle Scholar
Cheng, Y. and Reich, S. (2015), Assimilating data into scientific models: An optimal coupling perspective, in Nonlinear Data Assimilation, Vol. 2 of Frontiers in Applied Dynamical Systems, Springer, pp. 75118.10.1007/978-3-319-18347-3_2CrossRefGoogle Scholar
Chernov, A., Hoel, H., Law, K. J., Nobile, F. and Tempone, R. (2021), Multilevel ensemble Kalman filtering for spatio-temporal processes, Numer. Math. 147, 71125.10.1007/s00211-020-01159-3CrossRefGoogle Scholar
Chopin, N. and Papaspiliopoulos, O. (2020), An Introduction to Sequential Monte Carlo, Springer Nature.10.1007/978-3-030-47845-2CrossRefGoogle Scholar
Chustagulprom, N., Reich, S. and Reinhardt, M. (2016), A hybrid ensemble transform filter for nonlinear and spatially extended dynamical systems, SIAM/ASA J. Uncertain. Quantif. 4, 592608.10.1137/15M1040967CrossRefGoogle Scholar
Clark, J. and Crisan, D. (2005), On a robust version of the integral representation formula of nonlinear filtering, Probab . Theory Related Fields 133, 4356.10.1007/s00440-004-0412-5CrossRefGoogle Scholar
Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T. and Stuart, A. M. (2021), Calibrate, emulate, sample, J. Comput. Phys. 424, art. 109716.10.1016/j.jcp.2020.109716CrossRefGoogle Scholar
Coghi, M., Nilssen, T., Nüsken, N. and Reich, S. (2023), Rough McKean–Vlasov dynamics for robust ensemble Kalman filtering, Ann . Appl. Probab. 33, 56935752.Google Scholar
Corenflos, A., Thornton, J., Deligiannidis, G. and Doucet, A. (2021), Differentiable particle filtering via entropy-regularized optimal transport, in Proceedings of the 38th International Conference on Machine Learning (Meila, M. and Zhang, T., eds), PMLR, pp. 21002111.Google Scholar
Cotter, C. and Reich, S. (2013), Ensemble filter techniques for intermittent data assimilation, Radon Ser . Comput. Appl. Math. 13, 91134.Google Scholar
Cotter, S. L., Roberts, G. O., Stuart, A. M. and White, D. (2013), MCMC methods for functions: Modifying old algorithms to make them faster, Statist . Sci. 28, 424446.Google Scholar
Crisan, D. and Lyons, T. (1999), A particle approximation of the solution of the Kushner–Stratonovitch equation, Probab . Theory Related Fields 115, 549578.10.1007/s004400050249CrossRefGoogle Scholar
Crisan, D. and Xiong, J. (2010), Approximate McKean–Vlasov representations for a class of SPDEs, Stochastics 82, 5368.10.1080/17442500902723575CrossRefGoogle Scholar
Crisan, D., Moral, P. Del and Lyons, T. (1999), Discrete filtering using branching and interacting particle systems, Markov Process . Rel. Fields 5, 293318.Google Scholar
Cuturi, M. (2013), Sinkhorn distances: Lightspeed computation of optimal transport, in Advances in Neural Information Processing Systems 27 (Burges, C. J. et al., eds), Curran Associates, pp. 22922300.Google Scholar
Daum, F., Huang, J. and Noushin, A. (2010), Exact particle flow for nonlinear filters, in Signal Processing, Sensor Fusion, and Target Recognition XIX (Kadar, I., ed.), International Society for Optics and Photonics (SPIE), pp. 92110.Google Scholar
de Wiljes, J. and Tong, X. T. (2020), Analysis of a localised nonlinear ensemble Kalman Bucy filter with complete and accurate observations, Nonlinearity 33, 47524782.10.1088/1361-6544/ab8d14CrossRefGoogle Scholar
de Wiljes, J., Reich, S. and Stannat, W. (2018), Long-time stability and accuracy of the ensemble Kalman–Bucy filter for fully observed processes and small measurement noise, SIAM J. Appl. Dyn. Syst. 17, 11521181.10.1137/17M1119056CrossRefGoogle Scholar
Del Moral, P. (1997), Nonlinear filtering: Interacting particle resolution, C. R . Acad. Sci. Math. 325, 653658.Google Scholar
Del Moral, P. (2004), Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer.10.1007/978-1-4684-9393-1CrossRefGoogle Scholar
Del Moral, P. and Guionnet, A. (2001), On the stability of interacting processes with applications to filtering and genetic algorithms, Ann . Inst. Henri Poincaré Probab. Statist. 37, 155194.10.1016/S0246-0203(00)01064-5CrossRefGoogle Scholar
Del Moral, P. and Horton, E. (2023), A theoretical analysis of one-dimensional discrete generation ensemble Kalman particle filters, Ann . Appl. Probab. 33, 13271372.Google Scholar
Del Moral, P. and Tugaut, J. (2018), On the stability and the uniform propagation of chaos properties of ensemble Kalman–Bucy filters, Ann . Appl. Probab. 28, 790850.Google Scholar
Del Moral, P., Doucet, A. and Jasra, A. (2006), Sequential Monte Carlo samplers, J. R . Statist. Soc. Ser. B. Statist. Methodol. 68, 411436.10.1111/j.1467-9868.2006.00553.xCrossRefGoogle Scholar
Ding, Z. and Li, Q. (2021a), Ensemble Kalman inversion: Mean-field limit and convergence analysis, Statist . Comput. 31, 121.Google Scholar
Ding, Z. and Li, Q. (2021b), Ensemble Kalman sampler: Mean-field limit and convergence analysis, SIAM J. Math. Anal. 53, 15461578.10.1137/20M1339507CrossRefGoogle Scholar
Ding, Z., Li, Q. and Lu, J. (2021), Ensemble Kalman inversion for nonlinear problems: Weights, consistency, and variance bounds, Found . Data Sci. 3, 371411.Google Scholar
Doucet, A., De Freitas, N. and Gordon, N. (2001), An introduction to sequential Monte Carlo methods, in Sequential Monte Carlo Methods in Practice, Springer, pp. 314.10.1007/978-1-4757-3437-9_1CrossRefGoogle Scholar
Dunbar, O. R. A., Duncan, A. B., Stuart, A. M. and Wolfram, M.-T. (2022), Ensemble inference methods for models with noisy and expensive likelihoods, SIAM J. Appl. Dyn. Syst. 21, 15391572.10.1137/21M1410853CrossRefGoogle Scholar
Dunbar, O. R. A., Garbuno-Inigo, A., Schneider, T. and Stuart, A. M. (2021), Calibration and uncertainty quantification of convective parameters in an idealized GCM, J. Adv. Model. Earth Systems 13, art. e2020MS002454.Google Scholar
Eaton, M. L. (2007), Multivariate Statistics: A Vector Space Approach, Vol. 53 of Lecture Notes: Monograph Series, Institute of Mathematical Statistics.10.1214/lnms/1196285102CrossRefGoogle Scholar
Eberle, A. (2019), Stochastic analysis. Lecture Notes, University of Bonn.Google Scholar
El Moselhy, T. A. and Marzouk, Y. M. (2012), Bayesian inference with optimal maps, J. Comput. Phys. 231, 78157850.10.1016/j.jcp.2012.07.022CrossRefGoogle Scholar
Emerick, A. A. and Reynolds, A. C. (2013a), Ensemble smoother with multiple data assimilation, Comput. Geosci. 55, 315.10.1016/j.cageo.2012.03.011CrossRefGoogle Scholar
Emerick, A. and Reynolds, A. (2013b), Investigation of the sampling performance of ensemble-based methods with a simple reservoir model, Comput. Geosci. 17, 325350.10.1007/s10596-012-9333-zCrossRefGoogle Scholar
Ernst, O. G., Sprungk, B. and Starkloff, H.-J. (2015), Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif. 3, 823851.10.1137/140981319CrossRefGoogle Scholar
Evans, L. C. (2012), An Introduction to Stochastic Differential Equations, American Mathematical Society.Google Scholar
Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. Oceans 99, 1014310162.10.1029/94JC00572CrossRefGoogle Scholar
Evensen, G. (2018), Analysis of iterative ensemble smoothers for solving inverse problems, Comput. Geosci. 22, 885908.10.1007/s10596-018-9731-yCrossRefGoogle Scholar
Evensen, G. (2019), Accounting for model errors in iterative ensemble smoothers, Comput. Geosci. 23, 761775.10.1007/s10596-019-9819-zCrossRefGoogle Scholar
Evensen, G., Vossepoel, F. C. and van Leeuwen, P. J. (2022), Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem, Springer Nature.10.1007/978-3-030-96709-3CrossRefGoogle Scholar
Fatkullin, I. and Vanden-Eijnden, E. (2004), A computational strategy for multiscale systems with applications to Lorenz 96 model, J. Comput. Phys. 200, 605638.10.1016/j.jcp.2004.04.013CrossRefGoogle Scholar
Fertig, E. J., Harlim, J. and Hunt, B. R. (2007), A comparative study of 4D-VAR and a 4D ensemble Kalman filter: Perfect model simulations with Lorenz-96, Tellus A 59, 96100.10.1111/j.1600-0870.2006.00205.xCrossRefGoogle Scholar
Foias, C. and Prodi, G. (1967), Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2, Rend . Semin. Mat. Univ. Padova 39, 134.Google Scholar
Foias, C., Mondaini, C. F. and Titi, E. S. (2016), A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst. 15, 21092142.10.1137/16M1076526CrossRefGoogle Scholar
Fornasier, M., Huang, H., Pareschi, L. and Sünnen, P. (2020), Consensus-based optimization on hypersurfaces: Well-posedness and mean-field limit, Math. Models Methods Appl. Sci. 30, 27252751.10.1142/S0218202520500530CrossRefGoogle Scholar
Fornasier, M., Klock, T. and Riedl, K. (2024), Consensus-based optimization methods converge globally, SIAM J. Optim. 34, 29733004.10.1137/22M1527805CrossRefGoogle Scholar
Frei, M. and Künsch, H. R. (2013), Bridging the ensemble Kalman and particle filters, Biometrika 100, 781800.10.1093/biomet/ast020CrossRefGoogle Scholar
Garbuno-Inigo, A., Hoffmann, F., Li, W. and Stuart, A. M. (2020a), Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler, SIAM J. Appl. Dyn. Syst. 19, 412441.10.1137/19M1251655CrossRefGoogle Scholar
Garbuno-Inigo, A., Nüsken, N. and Reich, S. (2020b), Affine invariant interacting Langevin dynamics for Bayesian inference, SIAM J. Appl. Dyn. Syst. 19, 16331658.10.1137/19M1304891CrossRefGoogle Scholar
Gelman, A., Gilks, W. R. and Roberts, G. O. (1997), Weak convergence and optimal scaling of random walk metropolis algorithms, Ann . Appl. Probab. 7, 110120.Google Scholar
Gesho, M., Olson, E. and Titi, E. S. (2016), A computational study of a data assimilation algorithm for the two-dimensional Navier–Stokes equations, Commun . Comput. Phys. 19, 10941110.10.4208/cicp.060515.161115aCrossRefGoogle Scholar
Ghil, M., Cohn, S., Tavantzis, J., Bube, K. and Isaacson, E. (1981), Applications of estimation theory to numerical weather prediction, in Dynamic Meteorology : Data Assimilation Methods, Springer, pp. 139224.Google Scholar
Goldstein, M. (2014), Bayes linear analysis. Wiley StatsRef: Statistics Reference Online, pp. 17.Google Scholar
Goldstein, M. and Rougier, J. (2006), Bayes linear calibrated prediction for complex systems, J. Amer. Statist. Assoc. 101, 11321143.10.1198/016214506000000203CrossRefGoogle Scholar
Goldstein, M. and Wooff, D. (2007), Bayes Linear Statistics : Theory and Methods, Vol. 716 of Wiley Series in Probability and Statistics, Wiley.Google Scholar
Gonzalez, O. and Stuart, A. M. (2008), A First Course in Continuum Mechanics, Cambridge University Press.Google Scholar
González-Tokman, C. and Hunt, B. R. (2013), Ensemble data assimilation for hyperbolic systems, Phys. D 243, 128142.Google Scholar
Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press.Google Scholar
Goodman, J. and Weare, J. (2010), Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci. 5, 6580.10.2140/camcos.2010.5.65CrossRefGoogle Scholar
Gottwald, G. A. and Majda, A. J. (2013), A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks, Nonlinear Process . Geophys. 20, 705712.Google Scholar
Gottwald, G. A. and Reich, S. (2021), Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation, Phys. D 423, art. 132911.10.1016/j.physd.2021.132911CrossRefGoogle Scholar
Grooms, I. (2021), Analog ensemble data assimilation and a method for constructing analogs with variational autoencoders, Quart . J. R. Meteorol. Soc. 147, 139149.Google Scholar
Grooms, I., Lee, Y. and Majda, A. J. (2014), Ensemble Kalman filters for dynamical systems with unresolved turbulence, J. Comput. Phys. 273, 435452.10.1016/j.jcp.2014.05.037CrossRefGoogle Scholar
Grooms, I., Lee, Y. and Majda, A. J. (2015), Ensemble filtering and low-resolution model error: Covariance inflation, stochastic parameterization, and model numerics, Mon . Weather Rev. 143, 39123924.10.1175/MWR-D-15-0032.1CrossRefGoogle Scholar
Gu, Y. and Oliver, D. S. (2007), An iterative ensemble Kalman filter for multiphase fluid flow data assimilation, SPE J. 12, 438446.10.2118/108438-PACrossRefGoogle Scholar
Gurtin, M. E. (1982), An Introduction to Continuum Mechanics, Academic Press.Google Scholar
Gurumoorthy, K. S., Grudzien, C., Apte, A., Carrassi, A. and Jones, C. K. (2017), Rank deficiency of Kalman error covariance matrices in linear time-varying system with deterministic evolution, SIAM J. Control Optim. 55, 741759.10.1137/15M1025839CrossRefGoogle Scholar
Guth, P. A., Schillings, C. and Weissmann, S. (2022), Ensemble Kalman filter for neural network-based one-shot inversion, in Optimization and Control for Partial Differential Equations (Herzog, R. et al., eds), De Gruyter, pp. 393418.Google Scholar
Ha, S.-Y., Jin, S. and Kim, D. (2021), Convergence and error estimates for time-discrete consensus-based optimization algorithms, Numer. Math. 147, 255282.10.1007/s00211-021-01174-yCrossRefGoogle Scholar
Haber, E., Lucka, F. and Ruthotto, L. (2018), Never look back: The EnKF method and its application to the training of neural networks without back propagation. Available at arXiv:1805.08034.Google Scholar
Hairer, M., Stuart, A. M. and Vollmer, S. J. (2014), Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions, Ann . Appl. Probab. 24, 24552490.Google Scholar
Harlim, J. and Hunt, B. R. (2007a), Four-dimensional local ensemble transform Kalman filter: Numerical experiments with a global circulation model, Tellus A 59, 731748.10.1111/j.1600-0870.2007.00255.xCrossRefGoogle Scholar
Harlim, J. and Hunt, B. R. (2007b), A non-Gaussian ensemble filter for assimilating infrequent noisy observations, Tellus A 59, 225237.10.1111/j.1600-0870.2007.00225.xCrossRefGoogle Scholar
Harlim, J. and Majda, A. J. (2010), Filtering turbulent sparsely observed geophysical flows, Mon . Weather Rev. 138, 10501083.10.1175/2009MWR3113.1CrossRefGoogle Scholar
Harlim, J., Mahdi, A. and Majda, A. J. (2014), An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models, J. Comput. Phys. 257, 782812.10.1016/j.jcp.2013.10.025CrossRefGoogle Scholar
Hayden, K., Olson, E. and Titi, E. S. (2011), Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations, Phys. D 240, 14161425.Google Scholar
Higham, D. J. (2001), An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43, 525546.10.1137/S0036144500378302CrossRefGoogle Scholar
Hirsch, M. W., Smale, S. and Devaney, R. L. (2013), Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press.Google Scholar
Ho, Y. and Lee, R. C. K. A. (1964), A Bayesian approach to problems in stochastic estimation and control, IEEE Trans. Automat. Control 9, 333339.10.1109/TAC.1964.1105763CrossRefGoogle Scholar
Hoel, H., Law, K. J. and Tempone, R. (2016), Multilevel ensemble Kalman filtering, SIAM J. Numer. Anal. 54, 18131839.10.1137/15M100955XCrossRefGoogle Scholar
Houtekamer, P. L. and Mitchell, H. L. (2005), Ensemble Kalman filtering, Quart . J. R. Meteorol. Soc. 131, 32693289.10.1256/qj.05.135CrossRefGoogle Scholar
Houtekamer, P. L. and Mitchell, M. L. (1998), Data assimilation using an ensemble Kalman filter techniques, Mon . Weather Rev. 126, 796811.10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hu, Y., Kallianpur, G. and Xiong, J. (2002), An approximation for the Zakai equation, Appl. Math. Optim. 45, 2344.10.1007/s00245-001-0024-8CrossRefGoogle Scholar
Huang, D. Z., Huang, J., Reich, S. and Stuart, A. M. (2022a), Efficient derivative-free Bayesian inference for large-scale inverse problems, Inverse Problems 38, art. 125006.10.1088/1361-6420/ac99faCrossRefGoogle Scholar
Huang, D. Z., Schneider, T. and Stuart, A. M. (2022b), Iterated Kalman methodology for inverse problems, J. Comput. Phys. 463, art. 111262.10.1016/j.jcp.2022.111262CrossRefGoogle Scholar
Hunt, B. R., Kostelich, E. J. and Szunyogh, I. (2007), Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Phys. D 230, 112126.Google Scholar
Iglesias, M. A. (2015), Iterative regularization for ensemble data assimilation in reservoir models, Comput. Geosci. 19, 177212.10.1007/s10596-014-9456-5CrossRefGoogle Scholar
Iglesias, M. A. (2016), A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems, Inverse Problems 32, art. 025002.10.1088/0266-5611/32/2/025002CrossRefGoogle Scholar
Iglesias, M. A., Law, K. J. and Stuart, A. M. (2013), Ensemble Kalman methods for inverse problems, Inverse Problems 29, art. 045001.10.1088/0266-5611/29/4/045001CrossRefGoogle Scholar
Iglesias, M. and Yang, Y. (2021), Adaptive regularisation for ensemble Kalman inversion, Inverse Problems 37, art. 025008.10.1088/1361-6420/abd29bCrossRefGoogle Scholar
Jazwinski, A. H. (2007), Stochastic Processes and Filtering Theory, Courier Corporation.Google Scholar
Julier, S., Uhlmann, J. and Durrant-Whyte, H. F. (2000), A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control 45, 477482.10.1109/9.847726CrossRefGoogle Scholar
Kaipio, J. and Somersalo, E. (2006), Statistical and Computational Inverse Problems, Vol. 160, Springer.Google Scholar
Kalman, R. E. (1960), A new approach to linear filtering and prediction problems, J. Basic Eng. 82, 3545.10.1115/1.3662552CrossRefGoogle Scholar
Kalman, R. E. and Bucy, R. S. (1961), New results in linear filtering and prediction theory, J. Basic Eng. 83, 95108.10.1115/1.3658902CrossRefGoogle Scholar
Kantas, N., Beskos, A. and Jasra, A. (2014), Sequential Monte Carlo methods for high-dimensional inverse problems: A case study for the Navier–Stokes equations, SIAM/ASA J. Uncertain. Quantif. 2, 464489.10.1137/130930364CrossRefGoogle Scholar
Kelly, D., Majda, A. J. and Tong, X. T. (2015), Concrete ensemble Kalman filters with rigorous catastrophic filter divergence, Proc . Nat. Acad. Sci. USA 112, 1058910594.10.1073/pnas.1511063112CrossRefGoogle Scholar
Kelly, D. T. B., Law, K. J. H. and Stuart, A. M. (2014), Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time, Nonlinearity 27, art. 2579.10.1088/0951-7715/27/10/2579CrossRefGoogle Scholar
Kim, J. W. and Mehta, P. G. (2024a), Duality for nonlinear filtering I: Observability, IEEE Trans. Automat. Control 69, 699711.10.1109/TAC.2023.3279206CrossRefGoogle Scholar
Kim, J. W. and Mehta, P. G. (2024b), Duality for nonlinear filtering II: Optimal control, IEEE Trans. Automat. Control 69, 712725.10.1109/TAC.2023.3279208CrossRefGoogle Scholar
Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversion, Water Resour . Res. 31, 24112419.Google Scholar
Kloeden, P. and Platen, E. (1991), Numerical Methods for Stochastic Differential Equations, Springer.10.1007/BF01543058CrossRefGoogle Scholar
Kovachki, N. B. and Stuart, A. M. (2019), Ensemble Kalman inversion: A derivative-free technique for machine learning tasks, Inverse Problems 35, art. 095005.10.1088/1361-6420/ab1c3aCrossRefGoogle Scholar
Kushner, H. and Yin, G. G. (2003), Stochastic Approximation and Recursive Algorithms and Applications , Vol. 35 of Applications of Mathematics: Stochastic Modelling and Applied Probability, Springer.Google Scholar
Kuznetsov, L., Ide, K. and Jones, C. K. R. T. (2003), A method for assimilation of Lagrangian data, Mon . Weather Rev. 131, 22472260.10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kwiatkowski, E. and Mandel, J. (2015), Convergence of the square root ensemble Kalman filter in the large ensemble limit, SIAM/ASA J. Uncertain. Quantif. 3, 117.10.1137/140965363CrossRefGoogle Scholar
Lange, T. and Stannat, W. (2021a), On the continuous time limit of ensemble square root filters, Commun . Math. Sci. 19, 18551880.Google Scholar
Lange, T. and Stannat, W. (2021b), On the continuous time limit of the ensemble Kalman filter, Math. Comp. 90, 233265.10.1090/mcom/3588CrossRefGoogle Scholar
Larios, A. and Pei, Y. (2024), Nonlinear continuous data assimilation, Evol . Equ. Control Theory 13, 329348.10.3934/eect.2023048CrossRefGoogle Scholar
Latz, J. (2016), Bayes linear methods for inverse problems. Master’s thesis, University of Warwick.Google Scholar
Law, K. J. H. and Stuart, A. M. (2012), Evaluating data assimilation algorithms, Mon . Weather Rev. 140, 37573782.10.1175/MWR-D-11-00257.1CrossRefGoogle Scholar
Law, K. J. H., Sanz-Alonso, D., Shukla, A. and Stuart, A. M. (2016a), Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators, Phys. D 325, 113.Google Scholar
Law, K. J. H., Shukla, A. and Stuart, A. M. (2014), Analysis of the 3DVAR filter for the partially observed Lorenz’63 model, Discrete Contin . Dyn. Syst. 34, 10611078.Google Scholar
Law, K. J. H., Tembine, H. and Tempone, R. (2016b), Deterministic mean-field ensemble Kalman filtering, SIAM J. Sci. Comput. 38, A1251A1279.10.1137/140984415CrossRefGoogle Scholar
Law, K. J., Stuart, A. and Zygalakis, K. (2015), Data Assimilation: A Mathematical Introduction, Vol. 214 of Texts in Applied Mathematics, Springer.10.1007/978-3-319-20325-6CrossRefGoogle Scholar
Le Gland, F., Monbet, V. and Tran, V.-D. (2011), Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, pp. 598631.Google Scholar
Lea, D. J., Allen, M. R. and Haine, T. W. (2000), Sensitivity analysis of the climate of a chaotic system, Tellus A 52, 523532.10.3402/tellusa.v52i5.12283CrossRefGoogle Scholar
Lee, Y., Majda, A. J. and Qi, D. (2017), Preventing catastrophic filter divergence using adaptive additive inflation for baroclinic turbulence, Mon . Weather Rev. 145, 669682.10.1175/MWR-D-16-0121.1CrossRefGoogle Scholar
Lei, J. and Bickel, P. (2011), A moment matching ensemble filter for nonlinear non-Gaussian data assimilation, Mon . Weather Rev. 139, 39643973.10.1175/2011MWR3553.1CrossRefGoogle Scholar
Leimkuhler, B., Matthews, C. and Weare, J. (2018), Ensemble preconditioning for Markov chain Monte Carlo simulation, Statist . Comput. 28, 277290.Google Scholar
Li, G. and Reynolds, A. C. (2009), An iterative ensemble Kalman filter for data assimilation, SPE J. 14, 496505.10.2118/109808-PACrossRefGoogle Scholar
Liu, S., Reich, S. and Tong, X. T. (2025), Dropout ensemble Kalman inversion for high dimensional inverse problems, SIAM J. Numer. Anal. 63, 685715.10.1137/23M159860XCrossRefGoogle Scholar
Liu, Z., Stuart, A. and Wang, Y. (2022), Second order ensemble Langevin method for sampling and inverse problems. Available at arXiv:2208.04506.Google Scholar
Livings, D. M., Dance, S. L. and Nichols, N. K. (2008), Unbiased ensemble square root filters, Phys. D 237, 10211028.Google Scholar
Lorenz, E. N. (1996), Predictability: A problem partly solved, in Predictability of Weather and Climate, Cambridge University Press.Google Scholar
Luenberger, D. G. (1964), Observing the state of a linear system, IEEE Trans. Military Electronics 8, 7480.10.1109/TME.1964.4323124CrossRefGoogle Scholar
Luenberger, D. G. (1971), An introduction to observers, IEEE Trans. Automat. Control 16, 596602.10.1109/TAC.1971.1099826CrossRefGoogle Scholar
Majda, A. J. and Tong, X. T. (2018), Performance of ensemble Kalman filters in large dimensions, Commun . Pure Appl. Math. 71, 892937.10.1002/cpa.21722CrossRefGoogle Scholar
Mandel, J., Cobb, L. and Beezley, J. D. (2011), On the convergence of the ensemble Kalman filter, Appl. Math. 56, 533541.10.1007/s10492-011-0031-2CrossRefGoogle ScholarPubMed
McLachlan, R. I. and Quispel, G. R. W. (2002), Splitting methods, Acta Numer. 11, 341434.10.1017/S0962492902000053CrossRefGoogle Scholar
Mondaini, C. F. and Titi, E. S. (2018), Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM J. Numer. Anal. 56, 78110.10.1137/16M110962XCrossRefGoogle Scholar
Moodey, A. J. F., Lawless, A. S., Potthast, R. W. E. and van Leeuwen, P. J. (2013), Nonlinear error dynamics for cycled data assimilation methods, Inverse Problems 29, art. 025002.10.1088/0266-5611/29/2/025002CrossRefGoogle Scholar
Nerger, L. (2022), Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter, Quart . J. R. Meteorol. Soc. 148, 620640.Google Scholar
Nott, D. J., Marshall, L. and Ngoc, T. M. (2012), The ensemble Kalman filter is an ABC algorithm, Statist . Comput. 22, 12731276.Google Scholar
Nüsken, N. and Reich, S. (2019), Note on interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart. Available at arXiv:1908.10890.Google Scholar
Øksendal, B. (2013), Stochastic Differential Equations: An Introduction with Applications, Springer.Google Scholar
Oliver, D. S., Cunha, L. B. and Reynolds, A. C. (1997), Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geol. 29, 6191.10.1007/BF02769620CrossRefGoogle Scholar
Oliver, D. S., Reynolds, A. C. and Liu, N. (2008), Inverse Theory for Petroleum Reservoir Characterization and History Matching, Cambridge University Press.10.1017/CBO9780511535642CrossRefGoogle Scholar
Olson, E. and Titi, E. S. (2003), Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys. 113, 799840.10.1023/A:1027312703252CrossRefGoogle Scholar
Parzer, F. and Scherzer, O. (2022), On convergence rates of adaptive ensemble Kalman inversion for linear ill-posed problems, Numer. Math. 152, 371409.10.1007/s00211-022-01314-yCrossRefGoogle ScholarPubMed
Pathiraja, S., Reich, S. and Stannat, W. (2021), McKean–Vlasov SDEs in nonlinear filtering, SIAM J. Control Optim. 59, 41884212.10.1137/20M1355197CrossRefGoogle Scholar
Pavliotis, G. A. and Stuart, A. M. (2008), Multiscale Methods: Averaging and Homogenization, Springer.Google Scholar
Pavliotis, G. A., Stuart, A. M. and Vaes, U. (2022), Derivative-free Bayesian inversion using multiscale dynamics, SIAM J. Appl. Dyn. Syst. 21, 284326.10.1137/21M1397416CrossRefGoogle Scholar
Pecora, L. M. and Carroll, T. L. (1990), Synchronization in chaotic systems, Phys. Rev. Lett. 64, art. 821.10.1103/PhysRevLett.64.821CrossRefGoogle ScholarPubMed
Peyré, G. and Cuturi, M. (2019), Computational optimal transport: With applications to data science, Found . Trends Mach. Learn. 11, 355607.10.1561/2200000073CrossRefGoogle Scholar
Pidstrigach, J. and Reich, S. (2023), Affine-invariant ensemble transform methods for logistic regression, Found . Comput. Math. 23, 675708.Google Scholar
Pinnau, R., Totzeck, C., Tse, O. and Martin, S. (2017), A consensus-based model for global optimization and its mean-field limit, Math. Models Methods Appl. Sci. 27, 183204.10.1142/S0218202517400061CrossRefGoogle Scholar
Pulido, M., Tandeo, P., Bocquet, M., Carrassi, A. and Lucini, M. (2018), Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods, Tellus A 70, art. 1442099.10.1080/16000870.2018.1442099CrossRefGoogle Scholar
Qian, E. and Beattie, C. (2024), The fundamental subspaces of ensemble Kalman inversion. Available at arXiv:2409.08862.Google Scholar
Rebeschini, P. and Van Handel, R. (2015), Can local particle filters beat the curse of dimensionality?, Ann . Appl. Probab. 25, 28092866.Google Scholar
Reich, S. (2011), A dynamical systems framework for intermittent data assimilation, BIT Numer. Math. 51, 235249.10.1007/s10543-010-0302-4CrossRefGoogle Scholar
Reich, S. (2013), A nonparametric ensemble transform method for Bayesian inference, SIAM J. Sci. Comput. 35, A2013A2024.10.1137/130907367CrossRefGoogle Scholar
Reich, S. (2019), Data assimilation: The Schrödinger perspective, Acta Numer. 28, 635711.10.1017/S0962492919000011CrossRefGoogle Scholar
Reich, S. and Cotter, C. (2015), Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press.10.1017/CBO9781107706804CrossRefGoogle Scholar
Reich, S. and Weissmann, S. (2021), Fokker–Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA J. Uncertain. Quantif. 9, 446482.10.1137/19M1303162CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (1998), Optimal scaling of discrete approximations to Langevin diffusions, J. R . Statist. Soc. Ser. B. Statist. Methodol. 60, 255268.10.1111/1467-9868.00123CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (2001), Optimal scaling for various Metropolis–Hastings algorithms, Statist. Sci. 16, 351367.10.1214/ss/1015346320CrossRefGoogle Scholar
Robinson, G., Grooms, I. and Kleiber, W. (2018), Improving particle filter performance by smoothing observations, Mon . Weather Rev. 146, 24332446.10.1175/MWR-D-17-0349.1CrossRefGoogle Scholar
Sakov, P. and Oke, P. R. (2008), A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters, Tellus A 60, 361371.10.1111/j.1600-0870.2007.00299.xCrossRefGoogle Scholar
Sakov, P., Oliver, D. S. and Bertino, L. (2012), An iterative EnKF for strongly nonlinear systems, Mon . Weather Rev. 140, 19882004.10.1175/MWR-D-11-00176.1CrossRefGoogle Scholar
Salman, H., Kuznetsov, L., Jones, C. K. R. T. and Ide, K. (2006), A method for assimilating Lagrangian data into a shallow-water-equation ocean model, Mon . Weather Rev. 134, 10811101.10.1175/MWR3104.1CrossRefGoogle Scholar
Sampson, C., Carrassi, A., Aydoğdu, A. and Jones, C. K. R. T. (2021), Ensemble Kalman filter for nonconservative moving mesh solvers with a joint physics and mesh location update, Quart . J. R. Meteorol. Soc. 147, 15391561.10.1002/qj.3980CrossRefGoogle Scholar
Sanz-Alonso, D. and Stuart, A. M. (2015), Long-time asymptotics of the filtering distribution for partially observed chaotic dynamical systems, SIAM/ASA J. Uncertain. Quantif. 3, 12001220.10.1137/140997336CrossRefGoogle Scholar
Sanz-Alonso, D., Stuart, A. and Taeb, A. (2023), Inverse Problems and Data Assimilation, Vol. 107 of LMS Student Texts, Cambridge University Press.10.1017/9781009414319CrossRefGoogle Scholar
Särkkä, S. and Svensson, L. (2023), Bayesian Filtering and Smoothing, second edition, Cambridge University Press.10.1017/9781108917407CrossRefGoogle Scholar
Schillings, C. and Stuart, A. M. (2017), Analysis of the ensemble Kalman filter for inverse problems, SIAM J. Numer. Anal. 55, 12641290.10.1137/16M105959XCrossRefGoogle Scholar
Schillings, C. and Stuart, A. M. (2018), Convergence analysis of ensemble Kalman inversion: The linear, noisy case, Appl. Anal. 97, 107123.10.1080/00036811.2017.1386784CrossRefGoogle Scholar
Schneider, T., Lan, S., Stuart, A. M. and Teixeira, J. (2017), Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations, Geophys . Res. Lett. 44, 12396.10.1002/2017GL076101CrossRefGoogle Scholar
Sisson, S. A., Fan, Y. and Beaumont, M. (2018), Handbook of Approximate Bayesian Computation, CRC Press.10.1201/9781315117195CrossRefGoogle Scholar
Snyder, C. (2014), Introduction to the Kalman filter, in Advanced Data Assimilation for Geosciences: Lecture Notes of the Les Houches School of Physics , June 2012, Oxford University Press.Google Scholar
Snyder, C., Bengtsson, T., Bickel, P. and Anderson, J. (2008), Obstacles to high-dimensional particle filtering, Mon . Weather Rev. 136, 46294640.10.1175/2008MWR2529.1CrossRefGoogle Scholar
Sontag, E. D. (2013), Mathematical Control Theory: Deterministic Finite Dimensional Systems , Vol. 6 of Texts in Applied Mathematics, Springer.Google Scholar
Spantini, A., Baptista, R. and Marzouk, Y. (2022), Coupling techniques for nonlinear ensemble filtering, SIAM Rev. 64, 921953.10.1137/20M1312204CrossRefGoogle Scholar
Stordal, A. S., Karlsen, H. A., Nævdal, G., Skaug, H. J. and Vallés, B. (2011), Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter, Comput. Geosci. 15, 293305.10.1007/s10596-010-9207-1CrossRefGoogle Scholar
Strang, G. (1968), On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5, 506517.10.1137/0705041CrossRefGoogle Scholar
Stuart, A. M. (2010), Inverse problems: A Bayesian perspective, Acta Numer. 19, 451559.10.1017/S0962492910000061CrossRefGoogle Scholar
Sznitman, A.-S. (1991), Topics in propagation of chaos, Éc. Été Probab. St.-Flour XIX–1989 1464, 165251.Google Scholar
Taghvaei, A. and Hosseini, B. (2022), An optimal transport formulation of Bayes’ law for nonlinear filtering algorithms, in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 66086613.Google Scholar
Taghvaei, A. and Mehta, P. G. (2020), An optimal transport formulation of the ensemble Kalman filter, IEEE Trans. Automat. Control 66, 30523067.10.1109/TAC.2020.3015410CrossRefGoogle Scholar
Taghvaei, A. and Mehta, P. G. (2023), A survey of feedback particle filter and related controlled interacting particle systems (CIPS), Ann. Rev. Control 55, 356378.10.1016/j.arcontrol.2023.03.006CrossRefGoogle Scholar
Taghvaei, A., de Wiljes, J., Mehta, P. G. and Reich, S. (2017), Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem, ASME. J . Dyn. Syst. Meas. Control 140, art. 030904.10.1115/1.4037780CrossRefGoogle Scholar
Taghvaei, A., Mehta, P. G. and Meyn, S. P. (2020), Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM/ASA J. Uncertain. Quantif. 8, 10901117.10.1137/19M124513XCrossRefGoogle Scholar
Temam, R. (2012), Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Vol. 68 of Applied Mathematical Sciences, Springer.Google Scholar
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M. and Whitaker, J. S. (2003), Ensemble square root filters, Mon . Weather Rev. 131, 14851490.10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Tödter, J. and Ahrens, B. (2015), A second-order exact ensemble square root filter for nonlinear data assimilation, Mon . Weather Rev. 143, 13471367.10.1175/MWR-D-14-00108.1CrossRefGoogle Scholar
Tong, X. T. and Morzfeld, M. (2023), Localized ensemble Kalman inversion, Inverse Problems 39, art. 064002.10.1088/1361-6420/accb08CrossRefGoogle Scholar
Tong, X. T., Majda, A. J. and Kelly, D. (2016a), Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity 29, art. 657.10.1088/0951-7715/29/2/657CrossRefGoogle Scholar
Tong, X. T., Majda, A. J. and Kelly, D. (2016b), Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation, Commun . Math. Sci. 14, 12831313.Google Scholar
Tsianos, K. I., Lawlor, S. and Rabbat, M. G. (2012), Consensus-based distributed optimization: Practical issues and applications in large-scale machine learning, in 2012 50th Annual Allerton Conference on Communication, Control, and Computing, IEEE, pp. 15431550.Google Scholar
van Leeuwen, P. J. (2020), A consistent interpretation of the stochastic version of the ensemble Kalman filter, Quart . J. R. Meteorol. Soc. 146, 28152825.Google Scholar
van Leeuwen, P. J. and Evensen, G. (1996), Data assimilation and inverse methods in terms of a probabilistic formulation, Mon . Weather Rev. 124, 28982913.10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R. and Reich, S. (2019), Particle filters for high-dimensional geoscience applications: A review, Q. J . Royal Meteorol. Soc. 145, 23352365.10.1002/qj.3551CrossRefGoogle Scholar
Vanden-Eijnden, E. (2003), Fast communications: Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun . Math. Sci. 1, 385391.Google Scholar
Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P. and Beckers, J.-M. (2018), State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A 70, 143.10.1080/16000870.2018.1445364CrossRefGoogle Scholar
Villani, C. (2008), Optimal Transport : Old and New, Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer.Google Scholar
Villani, C. (2021), Topics in Optimal Transportation , Vol. 58 of Graduate Studies in Mathematics, American Mathematical Society.Google Scholar
Wang, X., Bishop, C. H. and Julier, S. J. (2004), Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble?, Mon . Weather Rev. 132, 15901605.10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Weissmann, S., Chada, N. K., Schillings, C. and Tong, X. T. (2022), Adpative Tikhonov strategies for stochastic ensemble Kalman inversion, Inverse Problems 38, art. 045009.10.1088/1361-6420/ac5729CrossRefGoogle Scholar
Welch, G. and Bishop, G. (1995), An introduction to the Kalman filter. Report TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, NC.Google Scholar
Whitaker, J. S. and Hamill, T. M. (2002), Ensemble data assimilation without perturbed observations, Mon . Weather Rev. 130, 19131924.10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Yang, L. M. and Grooms, I. (2021), Machine learning techniques to construct patched analog ensembles for data assimilation, J. Comput. Phys. 443, art. 110532.10.1016/j.jcp.2021.110532CrossRefGoogle Scholar
Yang, T., Blom, H. A. P. and Mehta, P. G. (2014), The continuous-discrete time feedback particle filter, in American Control Conference, IEEE, pp. 648653.Google Scholar
Yang, T., Mehta, P. G. and Meyn, S. P. (2013), Feedback particle filter, IEEE Trans. Automat. Control 58, 24652480.10.1109/TAC.2013.2258825CrossRefGoogle Scholar
Zech, J. and Marzouk, Y. (2022), Sparse approximation of triangular transports, Part I: The finite-dimensional case, Constr. Approx. 55, 919986.10.1007/s00365-022-09569-2CrossRefGoogle Scholar
Zhang, C. (2013), A particle system for global optimization, in 52nd IEEE Conference on Decision and Control, pp. 17141719.10.1109/CDC.2013.6760129CrossRefGoogle Scholar
Zhang, C., Taghvaei, A. and Mehta, P. G. (2017), A controlled particle filter for global optimization. Available at arXiv:1701.02413.Google Scholar
Zupanski, M. (2005), Maximum likelihood ensemble filter: Theoretical aspects, Mon . Weather Rev. 133, 17101726.10.1175/MWR2946.1CrossRefGoogle Scholar