Hostname: page-component-76c49bb84f-s7zp8 Total loading time: 0 Render date: 2025-07-04T08:13:53.833Z Has data issue: false hasContentIssue false

Distributionally robust optimization

Published online by Cambridge University Press:  01 July 2025

Daniel Kuhn
Affiliation:
Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland E-mail: daniel.kuhn@epfl.ch
Soroosh Shafiee
Affiliation:
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA E-mail: shafiee@cornell.edu
Wolfram Wiesemann
Affiliation:
Imperial College Business School, Imperial College London, London SW7 2AZ, UK E-mail: ww@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the worst distribution in the ambiguity set. This worst case criterion is supported by findings in psychology and neuroscience, which indicate that many decision-makers have a low tolerance for distributional ambiguity. DRO is rooted in statistics, operations research and control theory, and recent research has uncovered its deep connections to regularization techniques and adversarial training in machine learning. This survey presents the key findings of the field in a unified and self-contained manner.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

References

Acerbi, C. (2002), Spectral measures of risk: A coherent representation of subjective risk aversion, J. Banking Finance 26, 15051518.CrossRefGoogle Scholar
Ahmadi-Javid, A. (2012), Entropic value-at-risk: A new coherent risk measure, J. Optim. Theory Appl. 155, 11051123.CrossRefGoogle Scholar
Ahmed, S. (2006), Convexity and decomposition of mean-risk stochastic programs, Math. Program. 106, 433446.CrossRefGoogle Scholar
Ajtai, M., Komlós, J. and Tusnády, G. (1984), On optimal matchings, Combinatorica 4, 259264.CrossRefGoogle Scholar
Al Taha, F., Yan, S. and Bitar, E. (2023), A distributionally robust approach to regret optimal control using the Wasserstein distance, in 62nd IEEE Conference on Decision and Control (CDC), pp. 27682775.Google Scholar
Ali, S. M. and Silvey, S. D. (1966), A general class of coefficients of divergence of one distribution from another, J. Royal Statist. Soc. Ser. B 28, 131142.CrossRefGoogle Scholar
Altschuler, J. M. and Boix-Adsera, E. (2023), Polynomial-time algorithms for multimarginal optimal transport problems with structure, Math. Program. 199, 11071178.CrossRefGoogle Scholar
Ambrosio, L., Gigli, N. and Savaré, G. (2008), Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer.Google Scholar
An, Y. and Gao, R. (2021), Generalization bounds for (Wasserstein) robust optimization, in Advances in Neural Information Processing Systems 34 (Ranzato, M. et al., eds), Curran Associates, pp. 1038210392.Google Scholar
Analui, B. and Pflug, G. C. (2014), On distributionally robust multiperiod stochastic optimization, Comput. Manag. Sci. 11, 197220.10.1007/s10287-014-0213-yCrossRefGoogle Scholar
Anthony, M. and Bartlett, P. L. (1999), Neural Network Learning: Theoretical Foundations, Cambridge University Press.CrossRefGoogle Scholar
Anunrojwong, J., Balseiro, S. R. and Besbes, O. (2024), On the robustness of second-price auctions in prior-independent mechanism design, Oper. Res. Available at doi:10.1287/opre.2022.0428.Google Scholar
Aolaritei, L., Lanzetti, N., Chen, H. and Dörfler, F. (2022a), Uncertainty propagation via optimal transport ambiguity sets. Available at arXiv:2205.00343.Google Scholar
Aolaritei, L., Shafiee, S. and Dörfler, F. (2022b), Wasserstein distributionally robust estimation in high dimensions: Performance analysis and optimal hyperparameter tuning. Available at arXiv:2206.13269.Google Scholar
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999), Coherent measures of risk, Math. Finance 9, 203228.CrossRefGoogle Scholar
Atkinson, C. and Mitchell, A. F. (1981), Rao’s distance measure, Sankhyā 43, 345365.Google Scholar
Azizian, W., Iutzeler, F. and Malick, J. (2023a), Exact generalization guarantees for (regularized) Wasserstein distributionally robust models, in Advances in Neural Information Processing Systems 36 (Oh, A. et al., eds), Curran Associates, pp. 1458414596.Google Scholar
Azizian, W., Iutzeler, F. and Malick, J. (2023b), Regularization for Wasserstein distributionally robust optimization, ESAIM Control Optim. Calc. Var. 29, 133.CrossRefGoogle Scholar
Bach, F. (2013), Learning with submodular functions: A convex optimization perspective, Found . Trends Mach. Learn. 6, 145373.CrossRefGoogle Scholar
Bach, F. (2019), Submodular functions: From discrete to continuous domains, Math. Program. 175, 419459.CrossRefGoogle Scholar
Bai, X., He, G., Jiang, Y. and Obloj, J. (2023a), Wasserstein distributional robustness of neural networks, in Advances in Neural Information Processing Systems 36 (Oh, A. et al., eds), Curran Associates, pp. 2632226347.Google Scholar
Bai, Y., Lam, H. and Zhang, X. (2023b), A distributionally robust optimization framework for extreme event estimation. Available at arXiv:2301.01360.Google Scholar
Baire, R. (1905), Leçons sur les Fonctions Discontinues, Gauthier-Villars.Google Scholar
Banach, S. (1938), Über homogene Polynome in (L 2), Studia Math. 7, 3644.CrossRefGoogle Scholar
Bandi, C. and Bertsimas, D. (2014), Optimal design for multi-item auctions: A robust optimization approach, Math. Oper. Res. 39, 10121038.CrossRefGoogle Scholar
Bartl, D., Drapeau, S., Oblój, J. and Wiesel, J. (2021), Sensitivity analysis of Wasserstein distributionally robust optimization problems, Proc. Royal Soc. Ser. A 477, art. 20210176.CrossRefGoogle ScholarPubMed
Başar, T. (1977), Optimum Fisherian information for multivariate distributions, Ann . Statist. 5, 12401244.CrossRefGoogle Scholar
Başar, T. (1983), The Gaussian test channel with an intelligent jammer, IEEE Trans. Inform. Theory 29, 152157.CrossRefGoogle Scholar
Başar, T. and Basar, T. Ü. (1984), A bandwidth expanding scheme for communication channels with noiseless feedback in the presence of unknown jamming noise, J. Franklin Institute 317, 7388.CrossRefGoogle Scholar
Başar, T. and Bernhard, P. (1995), - optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, Springer.Google Scholar
Başar, T. and Max, M. (1973), A multistage pursuit-evasion game that admits a Gaussian random process as a maximin control policy, Stochastics 1, 2569.Google Scholar
Başar, T. and Mintz, M. (1972), Minimax terminal state estimation for linear plants with unknown forcing functions, Internat. J. Control 16, 4969.CrossRefGoogle Scholar
Başar, T. and Mintz, M. (1973), On a minimax estimate for the mean of a normal random vector under a generalized quadratic loss function, Ann . Statist. 1, 127134.CrossRefGoogle Scholar
Başar, T. and Wu, Y. W. (1985), A complete characterization of minimax and maximin encoder-decoder policies for communication channels with incomplete statistical description, IEEE Trans. Inform. Theory 31, 482489.CrossRefGoogle Scholar
Başar, T. and Wu, Y. W. (1986), Solutions to a class of minimax decision problems arising in communication systems, J. Optim. Theory Appl. 51, 375404.10.1007/BF00940281CrossRefGoogle Scholar
Başar, T. Ü. and Başar, T. (1982), Optimum coding and decoding schemes for the transmission of a stochastic process over a continuous-time stochastic channel with partially unknown statisticst, Stochastics 8, 213237.CrossRefGoogle Scholar
Bayrak, H. I., Koçyiğit, Ç., Kuhn, D. and Pınar, M. C. (2025), Distributionally robust optimal allocation with costly verification, Oper. Res. Available at doi:10.1287/opre.2022.0662.CrossRefGoogle Scholar
Bayraksan, G. and Love, D. K. (2015), Data-driven stochastic programming using phi-divergences, INFORMS TutORials in Operations Research, pp. 119. Available at doi:10.1287/educ.2015.0134.Google Scholar
Beale, E. M. L. (1955), On minimizing a convex function subject to linear inequalities, J. Royal Statist. Soc. Ser. B 17, 173184.10.1111/j.2517-6161.1955.tb00191.xCrossRefGoogle Scholar
Beck, A. and Ben-Tal, A. (2009), Duality in robust optimization: Primal worst equals dual best, Oper. Res. Lett. 37, 16.10.1016/j.orl.2008.09.010CrossRefGoogle Scholar
Belbasi, R., Selvi, A. and Wiesemann, W. (2023), It’s all in the mix: Wasserstein machine learning with mixed features. Available at arXiv:2312.12230.Google Scholar
Ben-Tal, A. and Hochman, E. (1972), More bounds on the expectation of a convex function of a random variable, J. Appl. Probab. 9, 803812.Google Scholar
Ben-Tal, A. and Nemirovski, A. (1998), Robust convex optimization, Math. Oper. Res. 23, 769805.CrossRefGoogle Scholar
Ben-Tal, A. and Nemirovski, A. (1999a), Robust solutions of uncertain linear programs, Oper. Res. Lett. 25, 113.10.1016/S0167-6377(99)00016-4CrossRefGoogle Scholar
Ben-Tal, A. and Nemirovski, A. (1999b), Robust truss topology design via semidefinite programming, SIAM J. Optim. 7, 9911016.CrossRefGoogle Scholar
Ben-Tal, A. and Nemirovski, A. (2000), Robust solutions of linear programming problems contaminated with uncertain data, Math. Program. 88, 411424.CrossRefGoogle Scholar
Ben-Tal, A. and Nemirovski, A. (2001), Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM.10.1137/1.9780898718829CrossRefGoogle Scholar
Ben-Tal, A. and Nemirovski, A. (2002), Robust optimization–methodology and applications, Math. Program. 92, 453480.10.1007/s101070100286CrossRefGoogle Scholar
Ben-Tal, A. and Teboulle, M. (1986), Expected utility, penalty functions, and duality in stochastic nonlinear programming, Manag . Sci. 32, 14451466.Google Scholar
Ben-Tal, A. and Teboulle, M. (2007), An old–new concept of convex risk measures: The optimized certainty equivalent, Math. Finance 17, 449476.10.1111/j.1467-9965.2007.00311.xCrossRefGoogle Scholar
Ben-Tal, A., Ben-Israel, A. and Teboulle, M. (1991), Certainty equivalents and information measures: Duality and extremal principles, J. Math. Anal. Appl. 157, 211236.CrossRefGoogle Scholar
Ben-Tal, A., den Hertog, D. and Vial, J.-P. (2015a), Deriving robust counterparts of nonlinear uncertain inequalities, Math. Program. 149, 265299.CrossRefGoogle Scholar
Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B. and Rennen, G. (2013), Robust solutions of optimization problems affected by uncertain probabilities, Manag . Sci. 59, 341357.Google Scholar
Ben-Tal, A., Ghaoui, L. El and Nemirovski, A. (2009), Robust Optimization, Princeton University Press.CrossRefGoogle Scholar
Ben-Tal, A., Hazan, E., Koren, T. and Mannor, S. (2015b), Oracle-based robust optimization via online learning, Oper. Res. 63, 628638.CrossRefGoogle Scholar
Bennouna, A. and Van Parys, B. P. G. (2021), Learning and decision-making with data: Optimal formulations and phase transitions. Available at arXiv:2109.06911.Google Scholar
Bennouna, A. and Van Parys, B. P. G. (2023), Holistic robust data-driven decisions. Available at arXiv:2207.09560.Google Scholar
Bennouna, A., Lucas, R. and Van Parys, B. P. G. (2023), Certified robust neural networks: Generalization and corruption resistance, in 40th International Conference on Machine Learning, Vol. 202 of Proceedings of Machine Learning Research, PMLR, pp. 20922112.Google Scholar
Berge, C. (1963), Topological Spaces: Including a Treatment of Multi-Valued Functions, Vector Spaces, and Convexity, Courier Corporation.Google Scholar
Bergemann, D. and Schlag, K. H. (2008), Pricing without priors, J. Eur. Econom. Assoc. 6, 560569.CrossRefGoogle Scholar
Bernstein, D. S. (2009), Matrix Mathematics: Theory, Facts, and Formulas, Princeton University Press.CrossRefGoogle Scholar
Bertsimas, D. and den Hertog, D. (2022), Robust and Adaptive Optimization, Dynamic Ideas.Google Scholar
Bertsimas, D. and Popescu, I. (2002), On the relation between option and stock prices: A convex optimization approach, Oper. Res. 50, 358374.CrossRefGoogle Scholar
Bertsimas, D. and Popescu, I. (2005), Optimal inequalities in probability theory: A convex optimization approach, SIAM J. Optim. 15, 780804.CrossRefGoogle Scholar
Bertsimas, D. and Sethuraman, J. (2000), Moment problems and semidefinite optimization, in Handbook of Semidefinite Programming: Theory, Algorithms, and Applications (Wolkowicz, H., Saigal, R. and Vandenberghe, L., eds), Springer, pp. 469509.CrossRefGoogle Scholar
Bertsimas, D. and Sim, M. (2004), The price of robustness, Oper. Res. 52, 3553.CrossRefGoogle Scholar
Bertsimas, D. and Van Parys, B. P. G. (2022), Bootstrap robust prescriptive analytics, Math. Program. 195, 3978.CrossRefGoogle Scholar
Bertsimas, D., Brown, D. B. and Caramanis, C. (2011), Theory and applications of robust optimization, SIAM Rev. 53, 464501.CrossRefGoogle Scholar
Bertsimas, D., den Hertog, D. and Pauphilet, J. (2021), Probabilistic guarantees in robust optimization, SIAM J. Optim. 31, 28932920.10.1137/21M1390967CrossRefGoogle Scholar
Bertsimas, D., Doan, X. V., Natarajan, K. and Teo, C.-P. (2010), Models for minimax stochastic linear optimization problems with risk aversion, Math. Oper. Res. 35, 580602.10.1287/moor.1100.0445CrossRefGoogle Scholar
Bertsimas, D., Gupta, V. and Kallus, N. (2018a), Data-driven robust optimization, Math. Program. 167, 235292.CrossRefGoogle Scholar
Bertsimas, D., Gupta, V. and Kallus, N. (2018b), Robust sample average approximation, Math. Program. 171, 217282.CrossRefGoogle Scholar
Bertsimas, D., Natarajan, K. and Teo, C.-P. (2004), Probabilistic combinatorial optimization: Moments, semidefinite programming, and asymptotic bounds, SIAM J. Optim. 15, 185209.10.1137/S1052623403430610CrossRefGoogle Scholar
Bertsimas, D., Natarajan, K. and Teo, C.-P. (2006a), Persistence in discrete optimization under data uncertainty, Math. Program. 108, 251274.CrossRefGoogle Scholar
Bertsimas, D., Natarajan, K. and Teo, C.-P. (2006b), Tight bounds on expected order statistics, Probab . Engrg Inform. Sci. 20, 667686.CrossRefGoogle Scholar
Bertsimas, D., Shtern, S. and Sturt, B. (2022), Two-stage sample robust optimization, Oper. Res. 70, 624640.10.1287/opre.2020.2096CrossRefGoogle Scholar
Bertsimas, D., Shtern, S. and Sturt, B. (2023), A data-driven approach to multistage stochastic linear optimization, Manag . Sci. 69, 5174.Google Scholar
Bhatia, R., Jain, T. and Lim, Y. (2018), Strong convexity of sandwiched entropies and related optimization problems, Rev. Math. Phys. 30, art. 1850014.CrossRefGoogle Scholar
Bhatia, R., Jain, T. and Lim, Y. (2019), On the Bures–Wasserstein distance between positive definite matrices, Expo . Math. 37, 165191.Google Scholar
Bhattacharyya, C. (2004), Second order cone programming formulations for feature selection, J. Mach. Learn. Res. 5, 14171433.Google Scholar
Billingsley, P. (2013), Convergence of Probability Measures, Wiley.Google Scholar
Birge, J. R. and Louveaux, F. (2011), Introduction to Stochastic Programming, Springer.CrossRefGoogle Scholar
Birge, J. R. and Wets, R. J.-B. (1986), Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse, Math. Program. Study 27, 54102.CrossRefGoogle Scholar
Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer.Google Scholar
Blanchet, J. and Kang, Y. (2020), Semi-supervised learning based on distributionally robust optimization, in Data Analysis and Applications 3 (Makrides, A., Karagrigoriou, A. and Skiadas, C. H., eds), Wiley, pp. 133.Google Scholar
Blanchet, J. and Kang, Y. (2021), Sample out-of-sample inference based on Wasserstein distance, Oper. Res. 69, 9851013.10.1287/opre.2020.2028CrossRefGoogle Scholar
Blanchet, J. and Murthy, K. (2019), Quantifying distributional model risk via optimal transport, Math. Oper. Res. 44, 565600.CrossRefGoogle Scholar
Blanchet, J. and Shapiro, A. (2024), Statistical limit theorems in distributionally robust optimization, in Proceedings of the Winter Simulation Conference (WSC ’23), IEEE Press, pp. 3145.Google Scholar
Blanchet, J., Chen, L. and Zhou, X. Y. (2022a), Distributionally robust mean–variance portfolio selection with Wasserstein distances, Manag . Sci. 68, 63826410.Google Scholar
Blanchet, J., Glynn, P. W., Yan, J. and Zhou, Z. (2019a), Multivariate distributionally robust convex regression under absolute error loss, in Advances in Neural Information Processing Systems 32 (Wallach, H. et al., eds), Curran Associates, pp. 1181711826.Google Scholar
Blanchet, J., He, F. and Murthy, K. (2020), On distributionally robust extreme value analysis, Extremes 23, 317347.10.1007/s10687-019-00371-1CrossRefGoogle Scholar
Blanchet, J., Kang, Y. and Murthy, K. (2019b), Robust Wasserstein profile inference and applications to machine learning, J. Appl. Probab. 56, 830857.10.1017/jpr.2019.49CrossRefGoogle Scholar
Blanchet, J., Kuhn, D., Li, J. and Taşkesen, B. (2023), Unifying distributionally robust optimization via optimal transport theory. Available at arXiv:2308.05414.Google Scholar
Blanchet, J., Lam, H., Liu, Y. and Wang, R. (2024a), Convolution bounds on quantile aggregation, Oper. Res. Available at doi:10.1287/opre.2021.0765.CrossRefGoogle Scholar
Blanchet, J., Li, J., Lin, S. and Zhang, X. (2024b), Distributionally robust optimization and robust statistics. Available at arXiv:2401.14655.Google Scholar
Blanchet, J., Murthy, K. and Nguyen, V. A. (2021), Statistical analysis of Wasserstein distributionally robust estimators, INFORMS TutORials in Operations Research, pp. 227254. Available at doi:10.1287/educ.2021.0233.Google Scholar
Blanchet, J., Murthy, K. and Si, N. (2022b), Confidence regions in Wasserstein distributionally robust estimation, Biometrika 109, 295315.10.1093/biomet/asab026CrossRefGoogle Scholar
Blanchet, J., Murthy, K. and Zhang, F. (2022c), Optimal transport-based distributionally robust optimization: Structural properties and iterative schemes, Math. Oper. Res. 47, 15001529.10.1287/moor.2021.1178CrossRefGoogle Scholar
Blankenstein, N. E., Crone, E. A., van den Bos, W. and van Duijvenvoorde, A. C. K. (2016), Adolescents display distinctive tolerance to ambiguity and to uncertainty during risky decision making, Develop . Neuropsychol. 41, 7792.Google Scholar
Boissard, E. and Le Gouic, T. (2014), On the mean speed of convergence of empirical and occupation measures in Wasserstein distance, Ann . Inst. Henri Poincaré Probab. Statist. 50, 539563.Google Scholar
Bolley, F., Guillin, A. and Villani, C. (2007), Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab . Theory Related Fields 137, 541593.CrossRefGoogle Scholar
Boole, G. (1854), An Investigation of the Laws of Thought, Walton and Maberly.Google Scholar
Bose, S. and Daripa, A. (2009), A dynamic mechanism and surplus extraction under ambiguity, J. Econom. Theory 144, 20842114.10.1016/j.jet.2009.02.003CrossRefGoogle Scholar
Boskos, D., Cortés, J. and Martínez, S. (2020), Data-driven ambiguity sets with probabilistic guarantees for dynamic processes, IEEE Trans. Automat. Control 66, 29913006.CrossRefGoogle Scholar
Bossaerts, P., Ghirardato, P., Guarnaschelli, S. and Zame, W. R. (2010), Ambiguity in asset markets: Theory and experiment, Rev. Financ. Stud. 23, 13251359.10.1093/rfs/hhp106CrossRefGoogle Scholar
Boucheron, S., Lugosi, G. and Massart, P. (2013), Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press.10.1093/acprof:oso/9780199535255.001.0001CrossRefGoogle Scholar
Bousquet, O., Boucheron, S. and Lugosi, G. (2004), Introduction to statistical learning theory, in Advanced Lectures on Machine Learning (Bousquet, O., von Luxburg, U. and Rätsch, G., eds), Springer, pp. 169207.CrossRefGoogle Scholar
Box, G. E. P. (1953), Non-normality and tests on variances, Biometrika 40, 318335.10.1093/biomet/40.3-4.318CrossRefGoogle Scholar
Box, G. E. P. (1979), Robustness in the strategy of scientific model building, in Robustness in Statistics (Launer, R. L. and Wilkinson, G. N., eds), Academic Press, pp. 201236.10.1016/B978-0-12-438150-6.50018-2CrossRefGoogle Scholar
Brenier, Y. (1991), Polar factorization and monotone rearrangement of vector-valued functions, Commun . Pure Appl. Math. 44, 375417.10.1002/cpa.3160440402CrossRefGoogle Scholar
Brezis, H. (2011), Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer.10.1007/978-0-387-70914-7CrossRefGoogle Scholar
Brugman, J., Van Leeuwaarden, J. S. H. and Stegehuis, C. (2022), Sharpest possible clustering bounds using robust random graph analysis, Phys. Rev. E 106, art. 064311.10.1103/PhysRevE.106.064311CrossRefGoogle ScholarPubMed
Buckert, M., Schwieren, C., Kudielka, B. M. and Fiebach, C. J. (2014), Acute stress affects risk taking but not ambiguity aversion, Front. Neurosci. 8, art. 82.CrossRefGoogle Scholar
Bui, N., Nguyen, D. and Nguyen, V. A. (2022), Counterfactual plans under distributional ambiguity, in International Conference on Learning Representations (ICLR 2022).Google Scholar
Bungert, L., Trillos, N. Garca and Murray, R. (2023), The geometry of adversarial training in binary classification, Inform. Inference 12, 921968.10.1093/imaiai/iaac029CrossRefGoogle Scholar
Bungert, L., Laux, T. and Stinson, K. (2024), A mean curvature flow arising in adversarial training, J. Math. Pures Appl. 192, art. 103625.10.1016/j.matpur.2024.103625CrossRefGoogle Scholar
Cabantous, L. (2007), Ambiguity aversion in the field of insurance: Insurers’ attitude to imprecise and conflicting probability estimates, Theory Decis. 62, 219240.10.1007/s11238-006-9015-1CrossRefGoogle Scholar
Cai, J., Li, J. Y.-M. and Mao, T. (2023), Distributionally robust optimization under distorted expectations, Oper. Res. 73, 969985.10.1287/opre.2020.0685CrossRefGoogle Scholar
Calafiore, G. C. (2007), Ambiguous risk measures and optimal robust portfolios, SIAM J. Optim. 18, 853877.10.1137/060654803CrossRefGoogle Scholar
Calafiore, G. C. and Campi, M. C. (2005), Uncertain convex programs: Randomized solutions and confidence levels, Math. Program. 102, 2546.10.1007/s10107-003-0499-yCrossRefGoogle Scholar
Calafiore, G. C. and Campi, M. C. (2006), The scenario approach to robust control design, IEEE Trans. Automat. Control 51, 742753.10.1109/TAC.2006.875041CrossRefGoogle Scholar
Calafiore, G. C. and Ghaoui, L. El (2006), On distributionally robust chance-constrained linear programs, J. Optim. Theory Appl. 130, 122.10.1007/s10957-006-9084-xCrossRefGoogle Scholar
Calafiore, G. C., Dabbene, F. and Tempo, R. (2011), Research on probabilistic methods for control system design, Automatica 47, 12791293.10.1016/j.automatica.2011.02.029CrossRefGoogle Scholar
Campi, M. C. and Caré, A. (2013), Random convex programs with L 1-regularization: Sparsity and generalization, SIAM J. Control Optim. 51, 35323557.CrossRefGoogle Scholar
Campi, M. C. and Garatti, S. (2008), The exact feasibility of randomized solutions of uncertain convex programs, SIAM J. Optim. 19, 12111230.CrossRefGoogle Scholar
Campi, M. C. and Garatti, S. (2011), A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality, J. Optim. Theory Appl. 148, 257280.10.1007/s10957-010-9754-6CrossRefGoogle Scholar
Campi, M. C. and Garatti, S. (2018), Wait-and-judge scenario optimization, Math. Program. 167, 155189.10.1007/s10107-016-1056-9CrossRefGoogle Scholar
Caré, A., Garatti, S. and Campi, M. C. (2014), FAST: Fast algorithm for the scenario technique, Oper. Res. 62, 662671.10.1287/opre.2014.1257CrossRefGoogle Scholar
Carmon, Y. and Hausler, D. (2022), Distributionally robust optimization via ball oracle acceleration, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 3586635879.Google Scholar
Carroll, G. (2017), Robustness and separation in multidimensional screening, Econometrica 85, 453488.10.3982/ECTA14165CrossRefGoogle Scholar
Champion, T., De Pascale, L. and Juutinen, P. (2008), The ∞-Wasserstein distance: Local solutions and existence of optimal transport maps, SIAM J. Math. Anal. 40, 120.CrossRefGoogle Scholar
Chan, G., Van Parys, B. and Bennouna, A. (2024), From distributional robustness to robust statistics: A confidence sets perspective. Available at arXiv:2410.14008.Google Scholar
Chebyshev, P. (1874), Sur les valeurs limites des intégrales, J. Math. Pures Appl. 19, 157160.Google Scholar
Chen, L. and Sim, M. (2024), Robust CARA optimization, Oper. Res. Available at doi:10.1287/opre.2021.0654.CrossRefGoogle Scholar
Chen, L., Fu, C., Si, F., Sim, M. and Xiong, P. (2024a), Robust optimization with moment-dispersion ambiguity, Oper. Res. Available at doi:10.1287/opre.2023.0579.CrossRefGoogle Scholar
Chen, L., He, S. and Zhang, S. (2011), Tight bounds for some risk measures, with applications to robust portfolio selection, Oper. Res. 59, 847865.10.1287/opre.1110.0950CrossRefGoogle Scholar
Chen, L., Ma, W., Natarajan, K., Simchi-Levi, D. and Yan, Z. (2022), Distributionally robust linear and discrete optimization with marginals, Oper. Res. 70, 18221834.10.1287/opre.2021.2243CrossRefGoogle Scholar
Chen, L., Padmanabhan, D., Lim, C. C. and Natarajan, K. (2020), Correlation robust influence maximization, in Advances in Neural Information Processing Systems 33 (Larochelle, H. et al., eds), Curran Associates, pp. 70787089.Google Scholar
Chen, R. and Paschalidis, I. C. (2018), A robust learning approach for regression models based on distributionally robust optimization, J. Mach. Learn. Res. 19, 517564.Google ScholarPubMed
Chen, R. and Paschalidis, I. C. (2019), Selecting optimal decisions via distributionally robust nearest-neighbor regression, in Advances in Neural Information Processing Systems 32 (Wallach, H. et al., eds), Curran Associates, pp. 749759.Google Scholar
Chen, W., Sim, M., Sun, J. and Teo, C.-P. (2010), From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Oper. Res. 58, 470485.10.1287/opre.1090.0712CrossRefGoogle Scholar
Chen, Z., Hu, Z. and Wang, R. (2024b), Screening with limited information: A dual perspective, Oper. Res. 72, 14871504.10.1287/opre.2022.0016CrossRefGoogle Scholar
Chen, Z., Kuhn, D. and Wiesemann, W. (2024c), Data-driven chance constrained programs over Wasserstein balls, Oper. Res. 72, 410424.10.1287/opre.2022.2330CrossRefGoogle Scholar
Chen, Z., Sim, M. and Xu, H. (2019), Distributionally robust optimization with infinitely constrained ambiguity sets, Oper. Res. 67, 13281344.10.1287/opre.2018.1799CrossRefGoogle Scholar
Cheng, J., Delage, E. and Lisser, A. (2014), Distributionally robust stochastic knapsack problem, SIAM J. Optim. 24, 14851506.10.1137/130915315CrossRefGoogle Scholar
Cherukuri, A. and Cortés, J. (2019), Cooperative data-driven distributionally robust optimization, IEEE Trans. Automat. Control 65, 44004407.10.1109/TAC.2019.2955031CrossRefGoogle Scholar
Chizat, L. (2022), Sparse optimization on measures with over-parameterized gradient descent, Math. Program. 194, 487532.CrossRefGoogle Scholar
Chizat, L. and Bach, F. (2018), On the global convergence of gradient descent for over-parameterized models using optimal transport, in Advances in Neural Information Processing Systems 31 (Bengio, S. et al., eds), Curran Associates, pp. 30403050.Google Scholar
Clément, P. and Desch, W. (2008), Wasserstein metric and subordination, Studia Math. 189, 3552.10.4064/sm189-1-4CrossRefGoogle Scholar
Coulson, J., Lygeros, J. and Dörfler, F. (2021), Distributionally robust chance constrained data-enabled predictive control, IEEE Trans. Automat. Control 67, 32893304.10.1109/TAC.2021.3097706CrossRefGoogle Scholar
Cover, T. and Thomas, J. (2006), Elements of Information Theory, Wiley.10.1002/047174882XCrossRefGoogle Scholar
Cramér, H. (1938), Sur un nouveau théorème-limite de la théorie des probabilités, Actualités Sci . Indust. 736, 523.Google Scholar
Cramér, H. (1946), Mathematical Methods of Statistics, Princeton University Press.Google Scholar
Csiszár, I. (1963), Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Publ . Math. Inst. Hungar. Acad. Sci. 8, 85108.Google Scholar
Csiszár, I. (1967), Information-type measures of difference of probability distributions and indirect observation, Studia Sci. Math. Hungar. 2, 229318.Google Scholar
Dantzig, G. B. (1955), Linear programming under uncertainty, Manag. Sci. 1, 197206.10.1287/mnsc.1.3-4.197CrossRefGoogle Scholar
Dantzig, G. B. (1956), The Simplex Method, RAND Corporation.Google Scholar
Das, B., Dhara, A. and Natarajan, K. (2021), On the heavy-tail behavior of the distributionally robust newsvendor, Oper. Res. 69, 10771099.10.1287/opre.2020.2091CrossRefGoogle Scholar
De Farias, D. P. and Van Roy, B. (2004), On constraint sampling in the linear programming approach to approximate dynamic programming, Math. Oper. Res. 29, 462478.10.1287/moor.1040.0094CrossRefGoogle Scholar
Delage, E. and Iancu, D. A. (2015), Robust multistage decision making, INFORMS TutORials in Operations Research, pp. 2046. Available at doi:10.1287/educ.2015.0139.CrossRefGoogle Scholar
Delage, E. and Ye, Y. (2010), Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper. Res. 58, 595612.10.1287/opre.1090.0741CrossRefGoogle Scholar
Delage, E., Kuhn, D. and Wiesemann, W. (2019), ‘Dice’-sion-making under uncertainty: When can a random decision reduce risk?, Manag . Sci. 65, 32823301.Google Scholar
Delbaen, F. (2002), Coherent risk measures on general probability spaces, in Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann (Sandmann, K. and Schönbucher, P. J., eds), Springer, pp. 137.Google Scholar
Dembo, A. and Zeitouni, O. (2009), Large Deviations Techniques and Applications, Springer.Google Scholar
DeMiguel, V. and Nogales, F. J. (2009), Portfolio selection with robust estimation, Oper. Res. 57, 560577.10.1287/opre.1080.0566CrossRefGoogle Scholar
DeMiguel, V., Garlappi, L. and Uppal, R. (2009), Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy?, Rev. Financ. Stud. 22, 19151953.10.1093/rfs/hhm075CrossRefGoogle Scholar
Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C. and Roli, F. (2019), Why do adversarial attacks transfer? Explaining transferability of evasion and poisoning attacks, in 28th USENIX Security Symposium, pp. 321338.Google Scholar
Dereich, S., Scheutzow, M. and Schottstedt, R. (2013), Constructive quantization: Approximation by empirical measures, Ann . Inst. Henri Poincaré Probab. Statist. 49, 11831203.Google Scholar
Dharmadhikari, S. and Joag-Dev, K. (1988), Unimodality, Convexity, and Applications, Elsevier.Google Scholar
Diakonikolas, I. and Kane, D. M. (2023), Algorithmic High-Dimensional Robust Statistics, Cambridge University Press.10.1017/9781108943161CrossRefGoogle Scholar
Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A. and Stewart, A. (2019), Robust estimators in high-dimensions without the computational intractability, SIAM J. Comput. 48, 742864.10.1137/17M1126680CrossRefGoogle Scholar
Diao, M. Z., Balasubramanian, K., Chewi, S. and Salim, A. (2023), Forward–backward Gaussian variational inference via JKO in the Bures–Wasserstein space, in 40th International Conference on Machine Learning, Vol. 202 of Proceedings of Machine Learning Research, PMLR, pp. 79607991.Google Scholar
Dimmock, S. G., Kouwenberg, R. and Wakker, P. P. (2016), Ambiguity attitudes in a large representative sample, Manag . Sci. 62, 13631380.Google Scholar
Doan, X. V. and Natarajan, K. (2012), On the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problems, Oper. Res. 60, 138149.10.1287/opre.1110.1005CrossRefGoogle Scholar
Doan, X. V., Li, X. and Natarajan, K. (2015), Robustness to dependency in portfolio optimization using overlapping marginals, Oper. Res. 63, 14681488.10.1287/opre.2015.1424CrossRefGoogle Scholar
Dobrić, V. and Yukich, J. E. (1995), Asymptotics for transportation cost in high dimensions, J. Theoret. Probab. 8, 97118.10.1007/BF02213456CrossRefGoogle Scholar
Dokov, S. P. and Morton, D. P. (2005), Second-order lower bounds on the expectation of a convex function, Math. Oper. Res. 30, 662677.10.1287/moor.1040.0136CrossRefGoogle Scholar
Donoho, D. L. and Liu, R. C. (1988), The ‘automatic’ robustness of minimum distance functionals, Ann . Statist. 16, 552586.10.1214/aos/1176350820CrossRefGoogle Scholar
Donsker, M. D. and Varadhan, S. R. S. (1983), Asymptotic evaluation of certain Markov process expectations for large time IV, Commun . Pure Appl. Math. 36, 183212.10.1002/cpa.3160360204CrossRefGoogle Scholar
Dowson, D. C. and Landau, B. V. (1982), The Fréchet distance between multivariate normal distributions, J. Multivariate Anal. 12, 450455.10.1016/0047-259X(82)90077-XCrossRefGoogle Scholar
Doyle, J. C., Glover, K., Khargonekar, P. and Francis, B. (1989), Robust control of time-delay systems, IEEE Trans. Automat. Control 34, 674683.Google Scholar
Duchi, J. C. and Namkoong, H. (2019), Variance-based regularization with convex objectives, J. Mach. Learn. Res. 20, 155.Google Scholar
Duchi, J. C. and Namkoong, H. (2021), Learning models with uniform performance via distributionally robust optimization, Ann . Statist. 49, 13781406.10.1214/20-AOS2004CrossRefGoogle Scholar
Duchi, J. C., Glynn, P. W. and Namkoong, H. (2021), Statistics of robust optimization: A generalized empirical likelihood approach, Math. Oper. Res. 46, 946969.10.1287/moor.2020.1085CrossRefGoogle Scholar
Duchi, J., Hashimoto, T. and Namkoong, H. (2023), Distributionally robust losses for latent covariate mixtures, Oper. Res. 71, 649664.10.1287/opre.2022.2363CrossRefGoogle Scholar
Dudley, R. M. (1969), The speed of mean Glivenko–Cantelli convergence, Ann . Math. Statist. 40, 4050.10.1214/aoms/1177697802CrossRefGoogle Scholar
Dulá, J. H. and Murthy, R. V. (1992), A Tchebysheff-type bound on the expectation of sublinear polyhedral functions, Oper. Res. 40, 914922.10.1287/opre.40.5.914CrossRefGoogle Scholar
Dullerud, G. E. and Paganini, F. (2001), A Course in Robust Control Theory: A Convex Approach, Springer.Google Scholar
Dupačová, J. (2006), Stress testing via contamination, in Coping with Uncertainty: Modeling and Policy Issues (Marti, K. et al., eds), Springer, pp. 2946.10.1007/3-540-35262-7_2CrossRefGoogle Scholar
Dupacová, J. and Wets, R. (1988), Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems, Ann . Statist. 16, 15171549.10.1214/aos/1176351052CrossRefGoogle Scholar
Dupačová, J. (1966), On minimax solutions of stochastic linear programming problems, Časopis pro pěstován matematiky 91, 423430.Google Scholar
Dupačová, J. (1987), The minimax approach to stochastic programming and an illustrative application, Stochastics 20, 7388.10.1080/17442508708833436CrossRefGoogle Scholar
Dupačová, J. (1994), Applications of stochastic programming under incomplete information, J. Comput. Appl. Math. 56, 113125.10.1016/0377-0427(94)90382-4CrossRefGoogle Scholar
Dupuis, P. and Mao, Y. (2022), Formulation and properties of a divergence used to compare probability measures without absolute continuity, ESAIM Control Optim. Calc. Var. 28, art. 10.10.1051/cocv/2022002CrossRefGoogle Scholar
Duque, D. and Morton, D. P. (2020), Distributionally robust stochastic dual dynamic programming, SIAM J. Optim. 30, 28412865.10.1137/19M1309602CrossRefGoogle Scholar
Dyer, M. and Stougie, L. (2006), Computational complexity of stochastic programming problems, Math. Program. 106, 423432.10.1007/s10107-005-0597-0CrossRefGoogle Scholar
Edmundson, H. P. (1956), Bounds on the expectation of a convex function of a random variable. The Rand Corporation Paper 982, Santa Monica, CA.Google Scholar
El Ghaoui, L. and Lebret, H. (1998a), Robust optimization of control systems: A convex approach, IEEE Trans. Automat. Control 43, 309319.Google Scholar
El Ghaoui, L. and Lebret, H. (1998b), Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal. Appl. 18, 10351064.10.1137/S0895479896298130CrossRefGoogle Scholar
El Ghaoui, L., Oks, M. and Oustry, F. (2003), Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Oper. Res. 51, 543556.10.1287/opre.51.4.543.16101CrossRefGoogle Scholar
El Ghaoui, L., Oustry, F. and Lebret, H. (1998), Robust solutions to uncertain semidefinite programs, SIAM J. Optim. 9, 3352.10.1137/S1052623496305717CrossRefGoogle Scholar
Ellis, R. S. (2007), Entropy, Large Deviations, and Statistical Mechanics, Springer.Google Scholar
Ellsberg, D. (1961), Risk, ambiguity, and the Savage axioms, Quart. J. Econom. 75, 643669.10.2307/1884324CrossRefGoogle Scholar
Embrechts, P. and Puccetti, G. (2006), Bounds for functions of multivariate risks, J. Multivariate Anal. 97, 526547.10.1016/j.jmva.2005.04.001CrossRefGoogle Scholar
Epstein, L. G. and Miao, J. (2003), A two-person dynamic equilibrium under ambiguity, J. Econom. Dynam. Control 27, 12531288.10.1016/S0165-1889(02)00059-3CrossRefGoogle Scholar
Erdoğan, E. and Iyengar, G. (2006), Ambiguous chance constrained problems and robust optimization, Math. Program. 107, 3761.10.1007/s10107-005-0678-0CrossRefGoogle Scholar
Ermoliev, Y., Gaivoronski, A. A. and Nedeva, C. (1985), Stochastic optimization problems with incomplete information on distribution functions, SIAM J. Control Optim. 23, 697716.10.1137/0323044CrossRefGoogle Scholar
Esteban-Pérez, A. and Morales, J. M. (2022), Distributionally robust stochastic programs with side information based on trimmings, Math. Program. 195, 10691105.10.1007/s10107-021-01724-0CrossRefGoogle Scholar
Farnia, F. and Tse, D. (2016), A minimax approach to supervised learning, in Advances in Neural Information Processing Systems 29 (Lee, D. et al., eds), Curran Associates, pp. 42404248.Google Scholar
Fenchel, W. (1953), Convex Cones, Sets, and Functions, Princeton University Press.Google Scholar
Finlay, C. and Oberman, A. M. (2021), Scaleable input gradient regularization for adversarial robustness, Mach . Learn. Appl. 3, art. 100017.Google Scholar
Folland, G. B. (1999), Real Analysis: Modern Techniques and Their Applications, Wiley.Google Scholar
Föllmer, H. and Schied, A. (2008), Stochastic Finance . An Introduction in Discrete Time, de Gruyter.Google Scholar
Fournier, N. (2023), Convergence of the empirical measure in expected Wasserstein distance: Non-asymptotic explicit bounds in , ESAIM Probab. Statist. 27, 749775.10.1051/ps/2023011CrossRefGoogle Scholar
Fournier, N. and Guillin, A. (2015), On the rate of convergence in Wasserstein distance of the empirical measure, Probab . Theory Related Fields 162, 707738.10.1007/s00440-014-0583-7CrossRefGoogle Scholar
Frank, N. and Niles-Weed, J. (2024a), The adversarial consistency of surrogate risks for binary classification, in Advances in Neural Information Processing Systems 36 (Oh, A. et al., eds), Curran Associates, pp. 4134341354.Google Scholar
Frank, N. S. and Niles-Weed, J. (2024b), Existence and minimax theorems for adversarial surrogate risks in binary classification, J. Mach. Learn. Res. 25, 141.Google Scholar
Frauendorfer, K. (1992), Stochastic Two-Stage Programming, Springer.10.1007/978-3-642-95696-6CrossRefGoogle Scholar
Fréchet, M. (1935), Généralisation du théorème des probabilités totales, Fund . Math. 25, 379387.Google Scholar
Gaivoronski, A. A. (1991), A numerical method for solving stochastic programming problems with moment constraints on a distribution function, Ann . Oper. Res. 31, 347370.10.1007/BF02204857CrossRefGoogle Scholar
Gallego, G. and Moon, I. (1993), The distribution free newsboy problem: Review and extensions, J. Oper. Res. Soc. 44, 825834.10.1057/jors.1993.141CrossRefGoogle Scholar
Ganguly, A. and Sutter, T. (2023), Optimal learning via moderate deviations theory. Available at arXiv:2305.14496.Google Scholar
Gao, R. (2023), Finite-sample guarantees for Wasserstein distributionally robust optimization: Breaking the curse of dimensionality, Oper. Res. 71, 22912306.10.1287/opre.2022.2326CrossRefGoogle Scholar
Gao, R. and Kleywegt, A. J. (2023), Distributionally robust stochastic optimization with Wasserstein distance, Math. Oper. Res. 48, 603655.10.1287/moor.2022.1275CrossRefGoogle Scholar
Gao, R., Arora, R. and Huang, Y. (2024a), Data-driven multistage distributionally robust linear optimization with nested distance. Available at arXiv:2407.16346.Google Scholar
Gao, R., Chen, X. and Kleywegt, A. J. (2017), Wasserstein distributional robustness and regularization in statistical learning. Available at arXiv:1712.06050.Google Scholar
Gao, R., Chen, X. and Kleywegt, A. J. (2024b), Wasserstein distributionally robust optimization and variation regularization, Oper. Res. 72, 11771191.10.1287/opre.2022.2383CrossRefGoogle Scholar
Gao, R., Xie, L., Xie, Y. and Xu, H. (2018), Robust hypothesis testing using Wasserstein uncertainty sets, in Advances in Neural Information Processing Systems 31 (Bengio, S. et al., eds), Curran Associates, pp. 79027912.Google Scholar
Trillos, C. A. García and Trillos, N. García (2022), On the regularized risk of distributionally robust learning over deep neural networks, Res. Math. Sci. 9, art. 54.10.1007/s40687-022-00349-9CrossRefGoogle Scholar
Trillos, N. García and Jacobs, M. (2023), An analytical and geometric perspective on adversarial robustness, Notices Amer. Math. Soc. 70, 11931204.Google Scholar
Trillos, N. García and Murray, R. (2022), Adversarial classification: Necessary conditions and geometric flows, J. Mach. Learn. Res. 23, 138.Google Scholar
Trillos, N. García, Jacobs, M. and Kim, J. (2023), The multimarginal optimal transport formulation of adversarial multiclass classification, J. Mach. Learn. Res. 24, 156.Google Scholar
Gassmann, H. and Ziemba, W. T. (1986), A tight upper bound for the expectation of a convex function of a multivariate random variable, in Stochastic Programming 84 Part I (Prékopa, A. and Wets, R. J.-B., eds), Vol. 27 of Mathematical Programming Studies, Springer, pp. 3953.10.1007/BFb0121113CrossRefGoogle Scholar
Gelbrich, M. (1990), On a formula for the L 2 Wasserstein metric between measures on Euclidean and Hilbert spaces, Math. Nachr. 147, 185203.10.1002/mana.19901470121CrossRefGoogle Scholar
Georgakopoulos, G., Kavvadias, D. and Papadimitriou, C. H. (1988), Probabilistic satisfiability, J. Complexity 4, 111.10.1016/0885-064X(88)90006-4CrossRefGoogle Scholar
Ghanem, R., Higdon, D. and Owhadi, H. (2017), Handbook of Uncertainty Quantification, Springer.10.1007/978-3-319-12385-1CrossRefGoogle Scholar
Ghosh, S., Squillante, M. and Wollega, E. (2021), Efficient stochastic gradient descent for learning with distributionally robust optimization, in Advances in Neural Information Processing Systems 34 (Ranzato, M. et al., eds), Curran Associates, pp. 2831028322.Google Scholar
Gilboa, I. and Schmeidler, D. (1989), Maxmin expected utility with a non-unique prior, J. Math. Econom. 18, 141153.10.1016/0304-4068(89)90018-9CrossRefGoogle Scholar
Givens, C. R. and Shortt, R. M. (1984), A class of Wasserstein metrics for probability distributions, Michigan Math. J. 31, 231240.10.1307/mmj/1029003026CrossRefGoogle Scholar
Goerigk, M. and Kurtz, J. (2023), Data-driven robust optimization using deep neural networks, Comput. Oper. Res. 151, art. 106087.10.1016/j.cor.2022.106087CrossRefGoogle Scholar
Goodfellow, I. J., Shlens, J. and Szegedy, C. (2015), Explaining and harnessing adversarial examples, in International Conference on Learning Representations (ICLR 2015).Google Scholar
Gotoh, J.-Y., Kim, M. J. and Lim, A. E. (2018), Robust empirical optimization is almost the same as mean–variance optimization, Oper. Res. Lett. 46, 448452.10.1016/j.orl.2018.05.005CrossRefGoogle Scholar
Gotoh, J.-Y., Kim, M. J. and Lim, A. E. (2021), Calibration of distributionally robust empirical optimization models, Oper. Res. 69, 16301650.10.1287/opre.2020.2041CrossRefGoogle Scholar
Gravin, N. and Lu, P. (2018), Separation in correlation-robust monopolist problem with budget, in 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 20692080.Google Scholar
Green, M. and Limebeer, D. J. N. (1995), H-infinity control theory: A tutorial, Automatica 31, 213222.Google Scholar
Gül, G. and Zoubir, A. M. (2017), Minimax robust hypothesis testing, IEEE Trans. Inform. Theory 63, 55725587.Google Scholar
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. (2017), Improved training of Wasserstein GANs, in Advances in Neural Information Processing Systems 30 (Guyon, I. et al., eds), Curran Associates, pp. 57695779.Google Scholar
Gupta, V. (2019), Near-optimal Bayesian ambiguity sets for distributionally robust optimization, Manag . Sci. 65, 42424260.Google Scholar
Gürbüzbalaban, M., Ruszczyński, A. and Zhu, L. (2022), A stochastic subgradient method for distributionally robust non-convex and non-smooth learning, J. Optim. Theory Appl. 194, 10141041.10.1007/s10957-022-02063-6CrossRefGoogle Scholar
Hajar, J., Kargin, T. and Hassibi, B. (2023), Wasserstein distributionally robust regret-optimal control under partial observability, in 59th Annual Allerton Conference on Communication, Control, and Computing, pp. 16.Google Scholar
Hakobyan, A. and Yang, I. (2024), Wasserstein distributionally robust control of partially observable linear stochastic systems, IEEE Trans. Automat. Control 69, 61216136.10.1109/TAC.2024.3394348CrossRefGoogle Scholar
Hamburger, H. (1920), Über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 81, 235319.10.1007/BF01564869CrossRefGoogle Scholar
Hampel, F. R. (1968), Contributions to the theory of robust estimation. Technical report, University of California, Berkeley.Google Scholar
Hampel, F. R. (1971), A general qualitative definition of robustness, Ann. Math. Statist. 42, 18871896.10.1214/aoms/1177693054CrossRefGoogle Scholar
Han, B., Shang, C. and Huang, D. (2021), Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making, European J. Oper. Res. 292, 10041018.10.1016/j.ejor.2020.11.027CrossRefGoogle Scholar
Han, S., Tao, M., Topcu, U., Owhadi, H. and Murray, R. M. (2015), Convex optimal uncertainty quantification, SIAM J. Optim. 25, 13681387.10.1137/13094712XCrossRefGoogle Scholar
Hanasusanto, G. A. and Kuhn, D. (2013), Robust data-driven dynamic programming, in Advances in Neural Information Processing Systems 26 (Burges, C. J. et al., eds), Curran Associates, pp. 827835.Google Scholar
Hanasusanto, G. A. and Kuhn, D. (2018), Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls, Oper. Res. 66, 849869.10.1287/opre.2017.1698CrossRefGoogle Scholar
Hanasusanto, G. A., Kuhn, D. and Wiesemann, W. (2016), A comment on ‘Computational complexity of stochastic programming problems’, Math. Program. 159, 557569.10.1007/s10107-015-0958-2CrossRefGoogle Scholar
Hanasusanto, G. A., Kuhn, D., Wallace, S. W. and Zymler, S. (2015a), Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Math. Program. 152, 132.10.1007/s10107-014-0776-yCrossRefGoogle Scholar
Hanasusanto, G. A., Roitch, V., Kuhn, D. and Wiesemann, W. (2015b), A distributionally robust perspective on uncertainty quantification and chance constrained programming, Math. Program. 151, 3562.10.1007/s10107-015-0896-zCrossRefGoogle Scholar
Hansen, L. P. and Sargent, T. J. (2008), Robustness, Princeton University Press.Google Scholar
Hansen, L. P. and Sargent, T. J. (2010), Wanting robustness in macroeconomics, in Handbook of Monetary Economics 3 (Friedman, B. M. and Woodford, M., eds), Elsevier, pp. 10971157.Google Scholar
Hartley, C. A. and Somerville, L. H. (2015), The neuroscience of adolescent decision-making, Current Opinion Behav . Sci. 5, 108115.Google Scholar
Hartung, J. (1982), An extension of Sion’s minimax theorem with an application to a method for constrained games, Pacific J. Math. 103, 401408.10.2140/pjm.1982.103.401CrossRefGoogle Scholar
Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.10.1007/978-0-387-84858-7CrossRefGoogle Scholar
Hausdorff, F. (1923), Momentprobleme für ein endliches Intervall, Math. Zeitschr. 16, 220248.10.1007/BF01175684CrossRefGoogle Scholar
Hayden, B., Heilbronner, S. and Platt, M. (2010), Ambiguity aversion in rhesus macaques, Front. Neurosci. Available at doi:10.3389/fnins.2010.00166/full.CrossRefGoogle Scholar
Hazan, E. (2022), Introduction to Online Convex Optimization, MIT Press.Google Scholar
He, Q., Xue, G., Chen, C., Lu, Z., Dong, Q., Lei, X., Ding, N., Li, J., Li, H., Chen, C., Li, J., Moyzis, R. K. and Bechara, A. (2010), Serotonin transporter gene-linked polymorphic region (5-HTTLPR) influences decision making under ambiguity and risk in a large Chinese sample, Neuropharmacol. 59, 518526.10.1016/j.neuropharm.2010.07.008CrossRefGoogle Scholar
He, S. and Lam, H. (2021), Higher-order expansion and Bartlett correctability of distributionally robust optimization. Available at arXiv:2108.05908.Google Scholar
Hespanha, J. P. (2019), Linear Systems Theory, Princeton University Press.Google Scholar
Ho-Nguyen, N. and Kılınç-Karzan, F. (2018), Online first-order framework for robust convex optimization, Oper. Res. 66, 16701692.10.1287/opre.2018.1764CrossRefGoogle Scholar
Ho-Nguyen, N. and Kılınç-Karzan, F. (2019), Exploiting problem structure in optimization under uncertainty via online convex optimization, Math. Program. 177, 113147.10.1007/s10107-018-1262-8CrossRefGoogle Scholar
Ho-Nguyen, N. and Wright, S. J. (2023), Adversarial classification via distributional robustness with Wasserstein ambiguity, Math. Program. 198, 14111447.10.1007/s10107-022-01796-6CrossRefGoogle Scholar
Ho-Nguyen, N., Kılınç-Karzan, F., Küçükyavuz, S. and Lee, D. (2022), Distributionally robust chance-constrained programs with right-hand side uncertainty under Wasserstein ambiguity, Math. Program. 196, 641672.10.1007/s10107-020-01605-yCrossRefGoogle Scholar
Honeyman, P., Ladner, R. E. and Yannakakis, M. (1980), Testing the universal instance assumption, Inform. Process. Lett. 10, 1419.10.1016/0020-0190(80)90114-3CrossRefGoogle Scholar
Hong, L. J., Huang, Z. and Lam, H. (2020), Learning-based robust optimization: Procedures and statistical guarantees, Manag . Sci. 67, 34473467.Google Scholar
Horn, R. A. and Johnson, C. R. (1985), H∞-optimal control and related minimax design problems, IEEE Trans. Automat. Control 30, 10571069.Google Scholar
Hou, S., Kassraie, P., Kratsios, A., Krause, A. and Rothfuss, J. (2023), Instance-dependent generalization bounds via optimal transport, J. Mach. Learn. Res. 24, 1681516865.Google Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. and Camerer, C. F. (2005), Neural systems responding to degrees of uncertainty in human decision-making, Science 310, 16801683.10.1126/science.1115327CrossRefGoogle ScholarPubMed
Hu, Y., Chen, X. and He, N. (2021), On the bias–variance–cost tradeoff of stochastic optimization, in Advances in Neural Information Processing Systems 34 (Ranzato, M. et al., eds), Curran Associates, pp. 2211922131.Google Scholar
Hu, Y., Wang, J., Chen, X. and He, N. (2024), Multi-level Monte-Carlo gradient methods for stochastic optimization with biased oracles. Available at arXiv:2408.11084.Google Scholar
Hu, Z. and Hong, L. J. (2013), Kullback–Leibler divergence constrained distributionally robust optimization. Available at optimization-online.org:2012/11/3677.pdf.Google Scholar
Hu, Z., Hong, L. J. and So, A. M.-C. (2013), Ambiguous probabilistic programs. Available at optimization-online.org:2013/09/4039.pdf.Google Scholar
Huang, K., Yang, H., King, I., Lyu, M. R. and Chan, L. (2004), The minimum error minimax probability machine, J. Mach. Learn. Res. 5, 12531286.Google Scholar
Huber, P. (1981), Robust Statistics, Wiley.10.1002/0471725250CrossRefGoogle Scholar
Huber, P. J. (1964), Robust estimation of a location parameter, Ann . Math. Statist. 35, 73101.10.1214/aoms/1177703732CrossRefGoogle Scholar
Huber, P. J. (1967), The behavior of maximum likelihood estimates under nonstandard conditions, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 221233.Google Scholar
Huber, P. J. (1968), Robust confidence limits, Z . Wahrscheinlichkeitsth. verwandte Gebiete 10, 269278.10.1007/BF00531848CrossRefGoogle Scholar
Husain, H. (2020), Distributional robustness with IPMs and links to regularization and GANs, in Advances in Neural Information Processing Systems 33 (Larochelle, H. et al., eds), Curran Associates, pp. 1181611827.Google Scholar
Isii, K. (1960), The extrema of probability determined by generalized moments I: Bounded random variables, Ann . Inst. Statist. Math. 12, 119134.10.1007/BF01733120CrossRefGoogle Scholar
Isii, K. (1962), On sharpness of Tchebycheff-type inequalities, Ann . Inst. Statist. Math. 14, 185197.10.1007/BF02868641CrossRefGoogle Scholar
Iyengar, G., Lam, H. and Wang, T. (2023), Hedging against complexity: Distributionally robust optimization with parametric approximation, in 26th International Conference on Artificial Intelligence and Statistics, Vol. 206 of Proceedings of Machine Learning Research, PMLR, pp. 997610011.Google Scholar
Jagannathan, R. (1977), Minimax procedure for a class of linear programs under uncertainty, Oper. Res. 25, 173177.10.1287/opre.25.1.173CrossRefGoogle Scholar
Jakubovitz, D. and Giryes, R. (2018), Improving DNN robustness to adversarial attacks using Jacobian regularization, in European Conference on Computer Vision, pp. 514529.Google Scholar
Janak, S. L., Lin, X. and Floudas, C. A. (2007), A new robust optimization approach for scheduling under uncertainty II: Uncertainty with known probability distribution, Comput. Chem. Engrg 31, 171195.10.1016/j.compchemeng.2006.05.035CrossRefGoogle Scholar
Jeffreys, H. and Wrinch, D. (1921), On certain fundamental principles of scientific enquiry, Philos . Mag. 42, 269298.Google Scholar
Jensen, J. L. W. V. (1906), Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30, 175193.10.1007/BF02418571CrossRefGoogle Scholar
Jiang, N. and Xie, W. (2024), Distributionally favorable optimization: A framework for data-driven decision-making with endogenous outliers, SIAM J. Optim. 34, 419458.10.1137/22M1528094CrossRefGoogle Scholar
Jiang, R. and Guan, Y. (2016), Data-driven chance constrained stochastic program, Math. Program. 158, 291327.10.1007/s10107-015-0929-7CrossRefGoogle Scholar
Jiang, R. and Guan, Y. (2018), Risk-averse two-stage stochastic program with distributional ambiguity, Oper. Res. 66, 13901405.10.1287/opre.2018.1729CrossRefGoogle Scholar
Jiang, Y. and Obloj, J. (2024), Sensitivity of causal distributionally robust optimization. Available at arXiv:2408.17109.Google Scholar
Jiang, Y., Chewi, S. and Pooladian, A.-A. (2024), Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space, in 37th Conference on Learning Theory, Vol. 247 of Proceedings of Machine Learning Research, PMLR, pp. 27202721.Google Scholar
Jongeneel, W., Sutter, T. and Kuhn, D. (2021), Topological linear system identification via moderate deviations theory, IEEE Control Systems Letters 6, 307312.10.1109/LCSYS.2021.3072814CrossRefGoogle Scholar
Jongeneel, W., Sutter, T. and Kuhn, D. (2022), Efficient learning of a linear dynamical system with stability guarantees, IEEE Trans. Automat. Control 68, 27902804.10.1109/TAC.2022.3213770CrossRefGoogle Scholar
Jylhä, H. (2015), The L optimal transport: Infinite cyclical monotonicity and the existence of optimal transport maps, Calc . Var. Partial Differential Equations 52, 303326.10.1007/s00526-014-0713-1CrossRefGoogle Scholar
Kallenberg, O. (1997), Foundations of Modern Probability, Springer.Google Scholar
Kargin, T., Hajar, J., Malik, V. and Hassibi, B. (2024a), The distributionally robust infinite-horizon LQR. Available at arXiv:2408.06230.Google Scholar
Kargin, T., Hajar, J., Malik, V. and Hassibi, B. (2024b), Distributionally robust Kalman filtering over finite and infinite horizon. Available at arXiv:2407.18837.Google Scholar
Kargin, T., Hajar, J., Malik, V. and Hassibi, B. (2024c), Infinite-horizon distributionally robust regret-optimal control, in 41st International Conference on Machine Learning, pp. 2318723214.Google Scholar
Kargin, T., Hajar, J., Malik, V. and Hassibi, B. (2024d), Wasserstein distributionally robust regret-optimal control over infinite-horizon, in 6th Annual Learning for Dynamics & Control Conference, Vol. 242 of Proceedings of Machine Learning Research, PMLR, pp. 16881701.Google Scholar
Karlin, S. and Studden, W. J. (1966), Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience Publishers.Google Scholar
Karmarkar, N. (1984), A new polynomial-time algorithm for linear programming, Combinatorica 4, 373395.10.1007/BF02579150CrossRefGoogle Scholar
Kelley, J. E. Jr (1960), The cutting-plane method for solving convex programs, J. Soc. Indust. Appl. Math. 8, 703712.10.1137/0108053CrossRefGoogle Scholar
Kent, C., Li, J., Blanchet, J. and Glynn, P. W. (2021), Modified Frank Wolfe in probability space, in Advances in Neural Information Processing Systems 34 (Ranzato, M. et al., eds), Curran Associates, pp. 1444814462.Google Scholar
Keynes, J. M. (1921), A Treatise on Probability, Macmillan.Google Scholar
Khachiyan, L. G. (1979), A polynomial algorithm in linear programming, Dokl . Akad. Nauk 244, 10931096.Google Scholar
Khalil, H. K. (1996), Control System Analysis and Design with Advanced Design Tools, Prentice Hall.Google Scholar
King, A. J. and Rockafellar, R. T. (1993), Asymptotic theory for solutions in statistical estimation and stochastic programming, Math. Oper. Res. 18, 148162.10.1287/moor.18.1.148CrossRefGoogle Scholar
King, A. J. and Wets, R. J.-B. (1991), Epi-consistency of convex stochastic programs, Stoch . Stoch. Reports 34, 8392.10.1080/17442509108833676CrossRefGoogle Scholar
Klabjan, D., Simchi-Levi, D. and Song, M. (2013), Robust stochastic lot-sizing by means of histograms, Prod . Oper. Manag. 22, 691710.Google Scholar
Knight, F. H. (1921), Risk, Uncertainty and Profit, Houghton Mifflin.Google Scholar
Koçyiğit, Ç., Iyengar, G., Kuhn, D. and Wiesemann, W. (2020), Distributionally robust mechanism design, Manag . Sci. 66, 159189.Google Scholar
Koçyiğit, Ç., Rujeerapaiboon, N. and Kuhn, D. (2022), Robust multidimensional pricing: Separation without regret, Math. Program. 196, 841874.10.1007/s10107-021-01615-4CrossRefGoogle Scholar
Koltchinskii, V. (2011), Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems, Springer.10.1007/978-3-642-22147-7CrossRefGoogle Scholar
Kouvelis, P. and Yu, G. (1997), Robust Discrete Optimization and its Applications, Springer.10.1007/978-1-4757-2620-6CrossRefGoogle Scholar
Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, X. F. and Milham, M. P. (2006), Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making, NeuroImage 32, 477484.10.1016/j.neuroimage.2006.02.047CrossRefGoogle ScholarPubMed
Krantz, S. G. and Parks, H. R. (2002), A Primer of Real Analytic Functions, Springer.10.1007/978-0-8176-8134-0CrossRefGoogle Scholar
Kuhn, D. (2005), Generalized Bounds for Convex Multistage Stochastic Programs, Springer.Google Scholar
Kuhn, D., Esfahani, P. Mohajerin, Nguyen, V. A. and Shafieezadeh-Abadeh, S. (2019), Wasserstein distributionally robust optimization: Theory and applications in machine learning, INFORMS TutORials in Operations Research, pp. 130166. Available at doi:10.1287/educ.2019.0198.Google Scholar
Kullback, S. (1959), Information Theory and Statistics, Wiley.Google Scholar
Kupper, M. and Schachermayer, W. (2009), Representation results for law invariant time consistent functions, Math. Financ. Econom. 2, 189210.10.1007/s11579-009-0019-9CrossRefGoogle Scholar
Kurakin, A., Goodfellow, I. J. and Bengio, S. (2017), Adversarial machine learning at scale, in International Conference on Learning Representations (ICLR 2017).Google Scholar
Kusuoka, S. (2001), On law invariant coherent risk measures, in Advances in Mathematical Economics (Kusuoka, S. and Maruyama, T., eds), Springer, pp. 8395.10.1007/978-4-431-67891-5_4CrossRefGoogle Scholar
Kwon, Y., Kim, W., Won, J.-H. and Paik, M. C. (2020), Principled learning method for Wasserstein distributionally robust optimization with local perturbations, in 37th International Conference on Machine Learning, Vol. 119 of Proceedings of Machine Learning Research, PMLR, pp. 55675576.Google Scholar
Lal, D. N. (1955), A note on a form of Tchebycheff’s inequality for two or more variables, Sankhyā 15, 317320.Google Scholar
Lam, H. (2016), Robust sensitivity analysis for stochastic systems, Math. Oper. Res. 41, 12481275.10.1287/moor.2015.0776CrossRefGoogle Scholar
Lam, H. (2018), Sensitivity to serial dependency of input processes: A robust approach, Manag . Sci. 64, 13111327.Google Scholar
Lam, H. (2019), Recovering best statistical guarantees via the empirical divergence-based distributionally robust optimization, Oper. Res. 67, 10901105.Google Scholar
Lam, H. (2021), On the impossibility of statistically improving empirical optimization: A second-order stochastic dominance perspective. Available at arXiv:2105.13419.Google Scholar
Lam, H. and Mottet, C. (2017), Tail analysis without parametric models: A worst-case perspective, Oper. Res. 65, 16961711.10.1287/opre.2017.1643CrossRefGoogle Scholar
Lam, H. and Zhou, E. (2017), The empirical likelihood approach to quantifying uncertainty in sample average approximation, Oper. Res. Lett. 45, 301307.10.1016/j.orl.2017.04.003CrossRefGoogle Scholar
Lam, H., Liu, Z. and Singham, D. I. (2024), Shape-constrained distributional optimization via importance-weighted sample average approximation. Available at arXiv:2406.07825.Google Scholar
Lam, H., Liu, Z. and Zhang, X. (2021), Orthounimodal distributionally robust optimization: Representation, computation and multivariate extreme event applications. Available at arXiv:2111.07894.Google Scholar
Lambert, M., Chewi, S., Bach, F., Bonnabel, S. and Rigollet, P. (2022), Variational inference via Wasserstein gradient flows, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 1443414447.Google Scholar
Lanckriet, G. R. G., Ghaoui, L. El, Bhattacharyya, C. and Jordan, M. I. (2001), Minimax probability machine, in Advances in Neural Information Processing Systems 14 (Dietterich, T. et al., eds), MIT Press, pp. 801807.Google Scholar
Lanckriet, G. R. G., Ghaoui, L. El, Bhattacharyya, C. and Jordan, M. I. (2002), A robust minimax approach to classification, J. Mach. Learn. Res. 3, 555582.Google Scholar
Lanzetti, N., Bolognani, S. and Dörfler, F. (2022), First-order conditions for optimization in the Wasserstein space. Available at arXiv:2209.12197.Google Scholar
Lanzetti, N., Terpin, A. and Dörfler, F. (2024), Variational analysis in the Wasserstein space. Available at arXiv:2406.10676.Google Scholar
Lasserre, J. B. (2001), Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11, 796817.10.1137/S1052623400366802CrossRefGoogle Scholar
Lasserre, J. B. (2002), Bounds on measures satisfying moment conditions, Ann . Appl. Probab. 12, 11141137.Google Scholar
Lasserre, J. B. (2008), A semidefinite programming approach to the generalized problem of moments, Math. Program. 112, 6592.10.1007/s10107-006-0085-1CrossRefGoogle Scholar
Lasserre, J. B. (2009), Moments, Positive Polynomials and Their Applications, World Scientific.10.1142/p665CrossRefGoogle Scholar
Lasserre, J. B. and Weisser, T. (2021), Distributionally robust polynomial chance-constraints under mixture ambiguity sets, Math. Program. 185, 409453.10.1007/s10107-019-01434-8CrossRefGoogle Scholar
Lau, T. T.-K. and Liu, H. (2022), Wasserstein distributionally robust optimization with Wasserstein barycenters. Available at arXiv:2203.12136.Google Scholar
Lee, J. and Raginsky, M. (2018), Minimax statistical learning with Wasserstein distances, in Advances in Neural Information Processing Systems 31 (Bengio, S. et al., eds), Curran Associates, pp. 26872696.Google Scholar
Lee, J., Park, S. and Shin, J. (2020), Learning bounds for risk-sensitive learning, in Advances in Neural Information Processing Systems 33 (Larochelle, H. et al., eds), Curran Associates, pp. 1386713879.Google Scholar
Lehmann, E. L. and Casella, G. (2006), Theory of Point Estimation, Springer.Google Scholar
Levitin, E. S. and Polyak, B. T. (1966), Constrained minimization methods, USSR Comput. Math. Math. Phys. 6, 150.10.1016/0041-5553(66)90114-5CrossRefGoogle Scholar
Levy, B. C. (2008), Robust hypothesis testing with a relative entropy tolerance, IEEE Trans. Inform. Theory 55, 413421.10.1109/TIT.2008.2008128CrossRefGoogle Scholar
Levy, B. C. and Nikoukhah, R. (2004), Robust least-squares estimation with a relative entropy constraint, IEEE Trans. Inform. Theory 50, 89104.10.1109/TIT.2003.821992CrossRefGoogle Scholar
Levy, B. C. and Nikoukhah, R. (2012), Robust state space filtering under incremental model perturbations subject to a relative entropy tolerance, IEEE Trans. Automat. Control 58, 682695.10.1109/TAC.2012.2219952CrossRefGoogle Scholar
Levy, D., Carmon, Y., Duchi, J. C. and Sidford, A. (2020), Large-scale methods for distributionally robust optimization, in Advances in Neural Information Processing Systems 33 (Larochelle, H. et al., eds), Curran Associates, pp. 88478860.Google Scholar
Li, B., Jiang, R. and Mathieu, J. L. (2016), Distributionally robust risk-constrained optimal power flow using moment and unimodality information, in 55th IEEE Conference on Decision and Control (CDC), pp. 24252430.Google Scholar
Li, B., Jiang, R. and Mathieu, J. L. (2019a), Ambiguous risk constraints with moment and unimodality information, Math. Program. 173, 151192.10.1007/s10107-017-1212-xCrossRefGoogle Scholar
Li, C., Turmunkh, U. and Wakker, P. P. (2019b), Trust as a decision under ambiguity, Exp. Econom. 22, 5175.10.1007/s10683-018-9582-3CrossRefGoogle Scholar
Li, D. and Martínez, S. (2020), Data assimilation and online optimization with performance guarantees, IEEE Trans. Automat. Control 66, 21152129.10.1109/TAC.2020.3005681CrossRefGoogle Scholar
Li, J., Chen, C. and So, A. M.-C. (2020), Fast epigraphical projection-based incremental algorithms for Wasserstein distributionally robust support vector machine, in Advances in Neural Information Processing Systems 33 (Larochelle, H. et al., eds), Curran Associates, pp. 40294039.Google Scholar
Li, J., Huang, S. and So, A. M.-C. (2019c), A first-order algorithmic framework for Wasserstein distributionally robust logistic regression, in Advances in Neural Information Processing Systems 32 (Wallach, H. et al., eds), Curran Associates, pp. 39373947.Google Scholar
Li, J., Lin, S., Blanchet, J. and Nguyen, V. A. (2022), Tikhonov regularization is optimal transport robust under martingale constraints, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 1767717689.Google Scholar
Li, J. Y.-M. (2018), Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization, Oper. Res. 66, 15331541.10.1287/opre.2018.1736CrossRefGoogle Scholar
Li, J. Y.-M. and Mao, T. (2022), A general Wasserstein framework for data-driven distributionally robust optimization: Tractability and applications. Available at arXiv:2207.09403.10.2139/ssrn.4168264CrossRefGoogle Scholar
Li, M., Sutter, T. and Kuhn, D. (2021), Distributionally robust optimization with Markovian data, in 38th International Conference on Machine Learning, Vol. 139 of Proceedings of Machine Learning Research, PMLR, pp. 64936503.Google Scholar
Li, Z., Ding, R. and Floudas, C. A. (2011), A comparative theoretical and computational study on robust counterpart optimization I: Robust linear optimization and robust mixed integer linear optimization, Indust. Engrg Chem. Res. 50, 1056710603.10.1021/ie200150pCrossRefGoogle Scholar
Liese, F. and Vajda, I. (1987), Convex Statistical Distances, Teubner.Google Scholar
Lin, S., Blanchet, J., Glynn, P. and Nguyen, V. A. (2024), Small sample behavior of Wasserstein projections, connections to empirical likelihood, and other applications. Available at arXiv:2408.11753.Google Scholar
Liu, F., Chen, Z., Wang, R. and Wang, S. (2024a), Newsvendor under mean–variance ambiguity and misspecification. Available at arXiv:2405.07008.Google Scholar
Liu, J., Su, Z. and Xu, H. (2024b), Bayesian distributionally robust Nash equilibrium and its application. Available at arXiv:2410.20364.Google Scholar
Liu, Z. and Loh, P.-L. (2023), Robust W-GAN-based estimation under Wasserstein contamination, Inform. Inference 12, 312362.10.1093/imaiai/iaac020CrossRefGoogle Scholar
Liu, Z., Van Parys, B. P. G. and Lam, H. (2023), Smoothed f-divergence distributionally robust optimization: Exponential rate efficiency and complexity-free calibration. Available at arXiv:2306.14041.Google Scholar
Long, D. Z., Qi, J. and Zhang, A. (2024), Supermodularity in two-stage distributionally robust optimization, Manag . Sci. 70, 13941409.Google Scholar
Lyu, C., Huang, K. and Liang, H.-N. (2015), A unified gradient regularization family for adversarial examples, in IEEE International Conference on Data Mining, pp. 301309.Google Scholar
Madansky, A. (1959), Bounds on the expectation of a convex function of a multivariate random variable, Ann . Math. Statist. 30, 743746.10.1214/aoms/1177706203CrossRefGoogle Scholar
Madry, A., Makelov, A., Schmidt, L., Tsipras, D. and Vladu, A. (2018), Towards deep learning models resistant to adversarial attacks, in International Conference on Learning Representations (ICLR 2018).Google Scholar
Maheshwari, C., Chiu, C.-Y., Mazumdar, E., Sastry, S. and Ratliff, L. (2022), Zeroth-order methods for convex-concave min-max problems: Applications to decision-dependent risk minimization, in 25th International Conference on Artificial Intelligence and Statistics, Vol. 151 of Proceedings of Machine Learning Research, PMLR, pp. 67026734.Google Scholar
Mak, H.-Y., Rong, Y. and Zhang, J. (2015), Appointment scheduling with limited distributional information, Manag . Sci. 61, 316334.Google Scholar
Markov, A. (1884), On certain applications of algebraic continued fractions (in Russian). PhD thesis, St Petersburg.Google Scholar
Marshall, A. W. and Olkin, I. (1960), A one-sided inequality of the Chebyshev type, Ann . Math. Statist. 31, 488491.10.1214/aoms/1177705913CrossRefGoogle Scholar
Marton, K. (1986), A simple proof of the blowing-up lemma, IEEE Trans. Inform. Theory 32, 445446.10.1109/TIT.1986.1057176CrossRefGoogle Scholar
Maurer, A. and Pontil, M. (2009), Empirical Bernstein bounds and sample variance penalization, in 22nd Conference on Learning Theory (COLT 2009). Available at https://www.cs.mcgill.ca/~colt2009/papers/012.pdf#page=1.Google Scholar
McAllister, R. D. and Esfahani, P. Mohajerin (2024), Distributionally robust model predictive control: Closed-loop guarantees and scalable algorithms, IEEE Trans. Automat. Control. Available at doi:10.1109/TAC.2024.3498702.CrossRefGoogle Scholar
McNeil, A., Frey, R. and Embrechts, P. (2015), Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press.Google Scholar
Mendelson, S. (2003), A few notes on statistical learning theory, in Advanced Lectures on Machine Learning (Mendelson, S. and Smola, A. J., eds), Springer, pp. 140.10.1007/3-540-36434-XCrossRefGoogle Scholar
Michaud, R. O. (1989), The Markowitz optimization enigma: Is ‘optimized’ optimal?, Financ . Anal. J. 45, 3142.Google Scholar
Milz, J. and Ulbrich, M. (2020), An approximation scheme for distributionally robust nonlinear optimization, SIAM J. Optim. 30, 19962025.10.1137/19M1263121CrossRefGoogle Scholar
Milz, J. and Ulbrich, M. (2022), An approximation scheme for distributionally robust PDE-constrained optimization, SIAM J. Control Optim. 60, 14101435.10.1137/20M134664XCrossRefGoogle Scholar
Mishra, V. K., Natarajan, K., Padmanabhan, D., Teo, C.-P. and Li, X. (2014), On theoretical and empirical aspects of marginal distribution choice models, Manag . Sci. 60, 15111531.Google Scholar
Mishra, V. K., Natarajan, K., Tao, H. and Teo, C.-P. (2012), Choice prediction with semidefinite optimization when utilities are correlated, IEEE Trans. Automat. Control 57, 24502463.10.1109/TAC.2012.2211175CrossRefGoogle Scholar
Esfahani, P. Mohajerin and Kuhn, D. (2018), Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations, Math. Program. 171, 115166.10.1007/s10107-017-1172-1CrossRefGoogle Scholar
Esfahani, P. Mohajerin, Shafieezadeh-Abadeh, S., Hanasusanto, G. A. and Kuhn, D. (2018), Data-driven inverse optimization with imperfect information, Math. Program. 167, 191234.10.1007/s10107-017-1216-6CrossRefGoogle Scholar
Esfahani, P. Mohajerin, Sutter, T. and Lygeros, J. (2015), Performance bounds for the scenario approach and an extension to a class of non-convex programs, IEEE Trans. Automat. Control 60, 4658.10.1109/TAC.2014.2330702CrossRefGoogle Scholar
Munkres, J. R. (2000), Topology, Prentice Hall.Google Scholar
Mutapcic, A. and Boyd, S. (2009), Cutting-set methods for robust convex optimization with pessimizing oracles, Optim. Methods Softw. 24, 381406.10.1080/10556780802712889CrossRefGoogle Scholar
Nagarajan, V. and Kolter, J. Z. (2017), Gradient descent GAN optimization is locally stable, in Advances in Neural Information Processing Systems 30 (Guyon, I. et al., eds), Curran Associates, pp. 55915600.Google Scholar
Nakao, H., Jiang, R. and Shen, S. (2021), Distributionally robust partially observable Markov decision process with moment-based ambiguity, SIAM J. Optim. 31, 461488.10.1137/19M1268410CrossRefGoogle Scholar
Namkoong, H. and Duchi, J. C. (2016), Stochastic gradient methods for distributionally robust optimization with f-divergences, in Advances in Neural Information Processing Systems 29 (Lee, D. et al., eds), Curran Associates, pp. 22162224.Google Scholar
Natarajan, K. (2021), Optimization with Marginals and Moments, Dynamic Ideas.Google Scholar
Natarajan, K. and Linyi, Z. (2007), A mean–variance bound for a three-piece linear function, Probab. Engrg Inform. Sci. 21, 611621.10.1017/S0269964807000356CrossRefGoogle Scholar
Natarajan, K., Pachamanova, D. and Sim, M. (2009a), Constructing risk measures from uncertainty sets, Oper. Res. 57, 11291141.10.1287/opre.1080.0683CrossRefGoogle Scholar
Natarajan, K., Padmanabhan, D. and Ramachandra, A. (2023), Distributionally robust optimization through the lens of submodularity. Available at arXiv:2312.04890.10.2139/ssrn.4677303CrossRefGoogle Scholar
Natarajan, K., Sim, M. and Uichanco, J. (2010), Tractable robust expected utility and risk models for portfolio optimization, Math. Finance 20, 695731.10.1111/j.1467-9965.2010.00417.xCrossRefGoogle Scholar
Natarajan, K., Sim, M. and Uichanco, J. (2018), Asymmetry and ambiguity in newsvendor models, Manag. Sci. 64, 31463167.10.1287/mnsc.2017.2773CrossRefGoogle Scholar
Natarajan, K., Song, M. and Teo, C.-P. (2009b), Persistency model and its applications in choice modeling, Manag. Sci. 55, 453469.10.1287/mnsc.1080.0951CrossRefGoogle Scholar
Natarajan, K., Teo, C. P. and Zheng, Z. (2011), Mixed 0-1 linear programs under objective uncertainty: A completely positive representation, Oper. Res. 59, 713728.10.1287/opre.1110.0918CrossRefGoogle Scholar
Nemirovski, A. and Shapiro, A. (2007), Convex approximations of chance constrained programs, SIAM J. Optim. 17, 969996.10.1137/050622328CrossRefGoogle Scholar
Nesterov, Y. and Nemirovskii, A. (1994), Interior-Point Polynomial Algorithms in Convex Programming, SIAM.10.1137/1.9781611970791CrossRefGoogle Scholar
Nguyen, D., Bui, N. and Nguyen, V. A. (2023a), Distributionally robust recourse action, in International Conference on Learning Representations (ICLR 2023).Google Scholar
Nguyen, V. A., Kuhn, D. and Esfahani, P. Mohajerin (2022), Distributionally robust inverse covariance estimation: The Wasserstein shrinkage estimator, Oper . Res. 70, 490515.Google Scholar
Nguyen, V. A., Shafiee, S., Filipović, D. and Kuhn, D. (2021), Mean–covariance robust risk measurement. Available at arXiv:2112.09959.10.2139/ssrn.3990847CrossRefGoogle Scholar
Nguyen, V. A., Shafieezadeh-Abadeh, S., Kuhn, D. and Esfahani, P. Mohajerin (2023b), Bridging Bayesian and minimax mean square error estimation via Wasserstein distributionally robust optimization, Math. Oper. Res. 48, 137.10.1287/moor.2021.1176CrossRefGoogle Scholar
Nguyen, V. A., Shafieezadeh-Abadeh, S., Yue, M.-C., Kuhn, D. and Wiesemann, W. (2019), Optimistic distributionally robust optimization for nonparametric likelihood approximation, in Advances in Neural Information Processing Systems 32 (Wallach, H. et al., eds), Curran Associates, pp. 1587215882.Google Scholar
Nguyen, V. A., Zhang, F., Blanchet, J., Delage, E. and Ye, Y. (2020), Distributionally robust local non-parametric conditional estimation, in Advances in Neural Information Processing Systems 33 (Larochelle, H. et al., eds), Curran Associates, pp. 1523215242.Google Scholar
Nguyen, V. A., Zhang, F., Wang, S., Blanchet, J., Delage, E. and Ye, Y. (2024), Robustifying conditional portfolio decisions via optimal transport, Oper. Res. Available at doi:10.1287/opre.2021.0243.CrossRefGoogle Scholar
Nietert, S., Goldfeld, Z. and Shafiee, S. (2024a), Outlier-robust Wasserstein DRO, in Advances in Neural Information Processing Systems 36 (Oh, A. et al., eds), Curran Associates, pp. 6279262820.Google Scholar
Nietert, S., Goldfeld, Z. and Shafiee, S. (2024b), Robust distribution learning with local and global adversarial corruptions, in 37th Conference on Learning Theory, Vol. 247 of Proceedings of Machine Learning Research, PMLR, pp. 40074008.Google Scholar
Nishimura, K. G. and Ozaki, H. (2004), Search and Knightian uncertainty, J. Econom. Theory 119, 299333.10.1016/j.jet.2003.04.001CrossRefGoogle Scholar
Nishimura, K. G. and Ozaki, H. (2006), An axiomatic approach to-contamination, Econom. Theory 27, 333340.10.1007/s00199-004-0584-3CrossRefGoogle Scholar
Olea, J. L. M., Rush, C., Velez, A. and Wiesel, J. (2022), The out-of-sample prediction error of the square-root-LASSO and related estimators. Available at arXiv:2211.07608.Google Scholar
Olkin, I. and Pukelsheim, F. (1982), The distance between two random vectors with given dispersion matrices, Linear Algebra Appl. 48, 257263.10.1016/0024-3795(82)90112-4CrossRefGoogle Scholar
Ordoudis, C., Nguyen, V. A., Kuhn, D. and Pinson, P. (2021), Energy and reserve dispatch with distributionally robust joint chance constraints, Oper. Res. Lett. 49, 291299.10.1016/j.orl.2021.01.012CrossRefGoogle Scholar
Owen, A. B. (1988), Empirical likelihood ratio confidence intervals for a single functional, Biometrika 75, 237249.10.1093/biomet/75.2.237CrossRefGoogle Scholar
Owen, A. B. (1990), Empirical likelihood ratio confidence regions, Ann . Statist. 18, 90120.10.1214/aos/1176347494CrossRefGoogle Scholar
Owen, A. B. (1991), Empirical likelihood for linear models, Ann . Statist. 19, 17251747.10.1214/aos/1176348368CrossRefGoogle Scholar
Owen, A. B. (2001), Empirical Likelihood, Chapman & Hall.Google Scholar
Owhadi, H. and Scovel, C. (2017), Extreme points of a ball about a measure with finite support, Commun . Math. Sci. 15, 7796.Google Scholar
Owhadi, H., Scovel, C., Sullivan, T. J., McKerns, M. and Ortiz, M. (2013), Optimal uncertainty quantification, SIAM Rev. 55, 271345.10.1137/10080782XCrossRefGoogle Scholar
Panaretos, V. M. and Zemel, Y. (2020), An Invitation to Statistics in Wasserstein Space, Springer.10.1007/978-3-030-38438-8CrossRefGoogle Scholar
Parrilo, P. A. (2000), Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology.Google Scholar
Parrilo, P. A. (2003), Semidefinite programming relaxations for semialgebraic problems, Math. Program. 96, 293320.10.1007/s10107-003-0387-5CrossRefGoogle Scholar
Pass, B. (2015), Multi-marginal optimal transport: Theory and applications, ESAIM Math. Model. Numer. Anal. 49, 17711790.10.1051/m2an/2015020CrossRefGoogle Scholar
Peng, S. (1997), Backward SDE and related G-expectation, in Backward Stochastic Differential Equations in Finance (El Karoui, N., Peng, S. and Quenez, M. C., eds), Wiley, pp. 141160.Google Scholar
Peng, S. (2007a), G-Brownian motion and dynamic risk measure under volatility uncertainty. Available at arXiv:0711.2834.Google Scholar
Peng, S. (2007b), G-expectation, G-Brownian motion and related stochastic calculus of Itô type, in Stochastic Analysis and Applications (Benth, F. E. et al., eds), Springer, pp. 541567.10.1007/978-3-540-70847-6_25CrossRefGoogle Scholar
Peng, S. (2019), Nonlinear Expectations and Stochastic Calculus under Uncertainty: With Robust CLT and G-Brownian Motion, Springer.10.1007/978-3-662-59903-7CrossRefGoogle Scholar
Peng, S. (2023), G-Gaussian processes under sublinear expectations and q-Brownian motion in quantum mechanics, Numer. Algebra Control Optim. 13, 583603.10.3934/naco.2022034CrossRefGoogle Scholar
Perakis, G. and Roels, G. (2008), Regret in the newsvendor model with partial information, Oper. Res. 56, 188203.10.1287/opre.1070.0486CrossRefGoogle Scholar
Pesenti, S., Wang, Q. and Wang, R. (2024), Optimizing distortion riskmetrics with distributional uncertainty, Math. Program. Available at doi:10.1007/s10107-024-02128-6.CrossRefGoogle Scholar
Pflug, G. C. and Pichler, A. (2014), Multistage Stochastic Optimization, Springer.10.1007/978-3-319-08843-3CrossRefGoogle Scholar
Pflug, G. C. and Wozabal, D. (2007), Ambiguity in portfolio selection, Quant. Finance 7, 435442.10.1080/14697680701455410CrossRefGoogle Scholar
Pflug, G. C., Pichler, A. and Wozabal, D. (2012), The 1/N investment strategy is optimal under high model ambiguity, J. Banking Finance 36, 410417.10.1016/j.jbankfin.2011.07.018CrossRefGoogle Scholar
Phelps, R. R. (1965), Lectures on Choquet’s Theorem, Van Nostrand Mathematical Studies.Google Scholar
Philpott, A. B., de Matos, V. L. and Kapelevich, L. (2018), Distributionally robust SDDP, Comput. Manag. Sci. 15, 431454.10.1007/s10287-018-0314-0CrossRefGoogle Scholar
Pichler, A. (2013), Evaluations of risk measures for different probability measures, SIAM J. Optim. 23, 530551.10.1137/110857088CrossRefGoogle Scholar
Pinelis, I. (2016), On the extreme points of moments sets, Math. Methods Oper. Res. 83, 325349.10.1007/s00186-015-0530-0CrossRefGoogle Scholar
Pólik, I. and Terlaky, T. (2007), A survey of the S-lemma, SIAM Rev. 49, 371418.10.1137/S003614450444614XCrossRefGoogle Scholar
Polyanskiy, Y. and Wu, Y. (2024), Information Theory: From Coding to Learning, Cambridge University Press.10.1017/9781108966351CrossRefGoogle Scholar
Popescu, I. (2005), A semidefinite programming approach to optimal-moment bounds for convex classes of distributions, Math. Oper. Res. 30, 632657.10.1287/moor.1040.0137CrossRefGoogle Scholar
Popescu, I. (2007), Robust mean–covariance solutions for stochastic optimization, Oper. Res. 55, 98112.10.1287/opre.1060.0353CrossRefGoogle Scholar
Postek, K. and Shtern, S. (2024), First-order algorithms for robust optimization problems via convex-concave saddle-point Lagrangian reformulation, INFORMS J. Comput. Available at doi:10.1287/ijoc.2022.0200.CrossRefGoogle Scholar
Postek, K., Ben-Tal, A., den Hertog, D. and Melenberg, B. (2018), Robust optimization with ambiguous stochastic constraints under mean and dispersion information, Oper. Res. 66, 814833.10.1287/opre.2017.1688CrossRefGoogle Scholar
Postek, K., den Hertog, D. and Melenberg, B. (2016), Computationally tractable counterparts of distributionally robust constraints on risk measures, SIAM Rev. 58, 603650.10.1137/151005221CrossRefGoogle Scholar
Postek, K., Romeijnders, W., den Hertog, D. and van der Vlerk, M. H. (2019), An approximation framework for two-stage ambiguous stochastic integer programs under mean–MAD information, European J. Oper. Res. 274, 432444.10.1016/j.ejor.2018.10.008CrossRefGoogle Scholar
Puccetti, G. and Rüschendorf, L. (2013), Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, 4253.10.1239/jap/1363784423CrossRefGoogle Scholar
Pydi, M. S. and Jog, V. (2021), Adversarial risk via optimal transport and optimal couplings, IEEE Trans. Inform. Theory 67, 60316052.10.1109/TIT.2021.3100107CrossRefGoogle Scholar
Pydi, M. S. and Jog, V. (2024), The many faces of adversarial risk: An expanded study, IEEE Trans. Inform. Theory 70, 550570.10.1109/TIT.2023.3303221CrossRefGoogle Scholar
Rahimian, H. and Mehrotra, S. (2022), Frameworks and results in distributionally robust optimization, Open J. Math. Optim. 3, 185.10.5802/ojmo.15CrossRefGoogle Scholar
Rahimian, H., Bayraksan, G. and Homem-de-Mello, T. (2019a), Controlling risk and demand ambiguity in newsvendor models, European J. Oper. Res. 279, 854868.10.1016/j.ejor.2019.06.036CrossRefGoogle Scholar
Rahimian, H., Bayraksan, G. and Homem-de-Mello, T. (2019b), Identifying effective scenarios in distributionally robust stochastic programs with total variation distance, Math. Program. 173, 393430.10.1007/s10107-017-1224-6CrossRefGoogle Scholar
Rahimian, H., Bayraksan, G. and Homem-de-Mello, T. (2022), Effective scenarios in multistage distributionally robust optimization with a focus on total variation distance, SIAM J. Optim. 32, 16981727.10.1137/21M1446484CrossRefGoogle Scholar
Reid, M. D. and Williamson, R. C. (2011), Information, divergence and risk for binary experiments, J. Mach. Learn. Res. 12, 731817.Google Scholar
Richter, H. (1957), Parameterfreie Abschätzung und Realisierung von Erwartungswerten, Blätter der DGVFM 3, 147162.10.1007/BF02808864CrossRefGoogle Scholar
Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press.10.1515/9781400873173CrossRefGoogle Scholar
Rockafellar, R. T. (1974), Conjugate Duality and Optimization, SIAM.10.1137/1.9781611970524CrossRefGoogle Scholar
Rockafellar, R. T. and Royset, J. O. (2013), Superquantiles and their applications to risk, random variables, and regression, INFORMS TutORials in Operations Research, pp. 151167. Available at doi:10.1287/educ.2013.0111.Google Scholar
Rockafellar, R. T. and Royset, J. O. (2014), Random variables, monotone relations, and convex analysis, Math. Program. 148, 297331.10.1007/s10107-014-0801-1CrossRefGoogle Scholar
Rockafellar, R. T. and Royset, J. O. (2015), Measures of residual risk with connections to regression, risk tracking, surrogate models, and ambiguity, SIAM J. Optim. 25, 11791208.10.1137/151003271CrossRefGoogle Scholar
Rockafellar, R. T. and Uryasev, S. (2000), Optimization of conditional value-at-risk, J. Risk 2, 2141.10.21314/JOR.2000.038CrossRefGoogle Scholar
Rockafellar, R. T. and Uryasev, S. (2002), Conditional value-at-risk for general loss distributions, J. Banking Finance 26, 14431471.10.1016/S0378-4266(02)00271-6CrossRefGoogle Scholar
Rockafellar, R. T. and Uryasev, S. (2013), The fundamental risk quadrangle in risk management, optimization and statistical estimation, Surv. Oper. Res. Manag. Sci. 18, 3353.Google Scholar
Rockafellar, R. T. and Wets, R. J.-B. (2009), Variational Analysis, Springer.Google Scholar
Rockafellar, R. T., Uryasev, S. and Zabarankin, M. (2006), Generalized deviations in risk analysis, Finance Stoch. 10, 5174.10.1007/s00780-005-0165-8CrossRefGoogle Scholar
Rockafellar, R. T., Uryasev, S. and Zabarankin, M. (2008), Risk tuning with generalized linear regression, Math. Oper. Res. 33, 712729.10.1287/moor.1080.0313CrossRefGoogle Scholar
Rogosinski, W. W. (1958), Moments of non-negative mass, Proc. Royal Soc. London Ser. A. 245, 127.Google Scholar
Rontsis, N., Osborne, M. A. and Goulart, P. J. (2020), Distributionally ambiguous optimization for batch Bayesian optimization, J. Mach. Learn. Res. 21, 126.Google Scholar
Roth, K., Lucchi, A., Nowozin, S. and Hofmann, T. (2017), Stabilizing training of generative adversarial networks through regularization, in Advances in Neural Information Processing Systems 30 (Guyon, I. et al., eds), Curran Associates, pp. 20182028.Google Scholar
Royset, J. O. (2022), Risk-adaptive approaches to learning and decision making: A survey. Available at arXiv:2212.00856.Google Scholar
Ruan, Y., Li, X., Murthy, K. and Natarajan, K. (2023), A nonparametric approach with marginals for modeling consumer choice, in 24th ACM Conference on Economics and Computation, ACM, p. 1078.Google Scholar
Rujeerapaiboon, N., Kuhn, D. and Wiesemann, W. (2016), Robust growth-optimal portfolios, Manag . Sci. 62, 20902109.Google Scholar
Rujeerapaiboon, N., Kuhn, D. and Wiesemann, W. (2018), Chebyshev inequalities for products of random variables, Math. Oper. Res. 43, 887918.10.1287/moor.2017.0888CrossRefGoogle Scholar
Rüschendorf, L. (1983), Solution of a statistical optimization problem by rearrangement methods, Metrika 30, 5561.10.1007/BF02056901CrossRefGoogle Scholar
Rüschendorf, L. (1991), Fréchet-bounds and their applications, in Advances in Probability Distributions with Given Marginals: Beyond the Copulas (Dall’Aglio, G., Kotz, S. and Salinetti, G., eds), Springer, pp. 151187.10.1007/978-94-011-3466-8_9CrossRefGoogle Scholar
Rüschendorf, L. (2013), Mathematical Risk Analysis: Dependence, Risk Bounds, Optimal Allocations and Portfolios, Springer.10.1007/978-3-642-33590-7CrossRefGoogle Scholar
Rustem, B. and Howe, M. (2009), Algorithms for Worst-Case Design and Applications to Risk Management, Princeton University Press.Google Scholar
Ruszczyński, A. (2021), A stochastic subgradient method for nonsmooth nonconvex multilevel composition optimization, SIAM J. Control Optim. 59, 23012320.10.1137/20M1312952CrossRefGoogle Scholar
Ruszczyński, A. and Shapiro, A. (2006), Optimization of convex risk functions, Math. Oper. Res. 31, 433452.10.1287/moor.1050.0186CrossRefGoogle Scholar
Rychener, Y., Esteban-Pérez, A., Morales, J. M. and Kuhn, D. (2024), Wasserstein distributionally robust optimization with heterogeneous data sources. Available at arXiv:2407.13582.Google Scholar
Sadana, U., Delage, E. and Georghiou, A. (2024), Data-driven decision-making under uncertainty with entropic risk measure. Available at arXiv:2409.19926.Google Scholar
Sagawa, S., Koh, P. W., Hashimoto, T. B. and Liang, P. (2020), Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization, in International Conference on Learning Representations (ICLR 2020).Google Scholar
Salo, A. A. and Weber, M. (1995), Ambiguity aversion in first-price sealed-bid auctions, J. Risk Uncertain. 11, 123137.10.1007/BF01067681CrossRefGoogle Scholar
Sauldubois, N. and Touzi, N. (2024), First order martingale model risk and semi-static hedging. Available at arXiv:2410.06906.Google Scholar
Savage, S. L. (2012), The Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty, Wiley.Google Scholar
Savage, S. L., Scholtes, S. and Zweidler, D. (2006), Probability management, OR/MS Today. Available at https://www.wiley.com/en-us/The+Flaw+of+Averages%3A+Why+We+Underestimate+Risk+in+the+Face+of+Uncertainty-p-9781118073759.Google Scholar
Scarf, H. E. (1958), A min-max solution to an inventory problem, in Studies in Mathematical Theory of Inventory and Production (K. J. Arrow, S. Karlin and Scarf, H. E., eds), Stanford University Press, pp. 201209.Google Scholar
Schildbach, G., Fagiano, L. and Morari, M. (2013), Randomized solutions to convex programs with multiple chance constraints, SIAM J. Optim. 23, 24792501.10.1137/120878719CrossRefGoogle Scholar
Selvi, A., Belbasi, M. R., Haugh, M. and Wiesemann, W. (2022), Wasserstein logistic regression with mixed features, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 1669116704.Google Scholar
Shafiee, S. and Kuhn, D. (2024), Minimax theorems and Nash equilibria in distributionally robust optimization problems. Working paper.Google Scholar
Shafiee, S., Aolaritei, L., Dörfler, F. and Kuhn, D. (2023), New perspectives on regularization and computation in optimal transport-based distributionally robust optimization. Available at arXiv:2303.03900.Google Scholar
Shafieezadeh-Abadeh, S., Kuhn, D. and Esfahani, P. Mohajerin (2019), Regularization via mass transportation, J. Mach. Learn. Res. 20, 168.Google Scholar
Shafieezadeh-Abadeh, S., Esfahani, P. Mohajerin and Kuhn, D. (2015), Distributionally robust logistic regression, in Advances in Neural Information Processing Systems 28 (Cortes, C. et al., eds), Curran Associates, pp. 15761584.Google Scholar
Shafieezadeh-Abadeh, S., Nguyen, V. A., Kuhn, D. and Esfahani, P. Mohajerin (2018), Wasserstein distributionally robust Kalman filtering, in Advances in Neural Information Processing Systems 31 (Bengio, S. et al., eds), Curran Associates, pp. 84748483.Google Scholar
Shalev-Shwartz, S. (2012), Online learning and online convex optimization, Found . Trends Mach. Learn. 4, 107194.10.1561/2200000018CrossRefGoogle Scholar
Shalev-Shwartz, S. and Ben-David, S. (2014), Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press.10.1017/CBO9781107298019CrossRefGoogle Scholar
Shapiro, A. (1989), Asymptotic properties of statistical estimators in stochastic programming, Ann . Statist. 17, 841858.10.1214/aos/1176347146CrossRefGoogle Scholar
Shapiro, A. (1990), On differential stability in stochastic programming, Math. Program. 47, 107116.10.1007/BF01580855CrossRefGoogle Scholar
Shapiro, A. (1991), Asymptotic analysis of stochastic programs, Ann. Oper. Res. 30, 169186.10.1007/BF02204815CrossRefGoogle Scholar
Shapiro, A. (1993), Asymptotic behavior of optimal solutions in stochastic programming, Math. Oper. Res. 18, 829845.10.1287/moor.18.4.829CrossRefGoogle Scholar
Shapiro, A. (2001), On duality theory of conic linear problems, in Semi-Infinite Programming (Goberna, M. Á. and López, M. A., eds), Kluwer Academic, pp. 135165.10.1007/978-1-4757-3403-4_7CrossRefGoogle Scholar
Shapiro, A. (2003), Monte Carlo sampling methods, in Stochastic Programming (Ruszczyński, A. and Shapiro, A., eds), Elsevier, pp. 353425.10.1016/S0927-0507(03)10006-0CrossRefGoogle Scholar
Shapiro, A. (2013), On Kusuoka representation of law invariant risk measures, Math. Oper. Res. 38, 142152.10.1287/moor.1120.0563CrossRefGoogle Scholar
Shapiro, A. (2017), Distributionally robust stochastic programming, SIAM J. Optim. 27, 22582275.10.1137/16M1058297CrossRefGoogle Scholar
Shapiro, A. and Kleywegt, A. (2002), Minimax analysis of stochastic problems, Optim. Methods Softw. 17, 523542.10.1080/1055678021000034008CrossRefGoogle Scholar
Shapiro, A., Dentcheva, D. and Ruszczyński, A. (2009), Lectures on Stochastic Programming: Modeling and Theory, SIAM.10.1137/1.9780898718751CrossRefGoogle Scholar
Shapiro, A., Zhou, E. and Lin, Y. (2023), Bayesian distributionally robust optimization, SIAM J. Optim. 33, 12791304.10.1137/21M1465548CrossRefGoogle Scholar
Shehadeh, K. S. (2023), Distributionally robust optimization approaches for a stochastic mobile facility fleet sizing, routing, and scheduling problem, Transport. Sci. 57, 197229.10.1287/trsc.2022.1153CrossRefGoogle Scholar
Shehadeh, K. S., Cohn, A. E. M. and Jiang, R. (2020), A distributionally robust optimization approach for outpatient colonoscopy scheduling, European J. Oper. Res. 283, 549561.10.1016/j.ejor.2019.11.039CrossRefGoogle Scholar
Shen, H. and Jiang, R. (2023), Chance-constrained set covering with Wasserstein ambiguity, Math. Program. 198, 621674.10.1007/s10107-022-01788-6CrossRefGoogle Scholar
Sheriff, M. R. and Esfahani, P. Mohajerin (2024), Nonlinear distributionally robust optimization, Math. Program. Available at doi:10.1007/s10107-024-02151-7.CrossRefGoogle Scholar
Shohat, J. A. and Tamarkin, J. D. (1950), The Problem of Moments, American Mathematical Society.Google Scholar
Sinha, A., Namkoong, H. and Duchi, J. (2018), Certifying some distributional robustness with principled adversarial training, in International Conference on Learning Representations (ICLR 2018).Google Scholar
Sion, M. (1958), On general minimax theorems, Pacific J. Math. 8, 171176.10.2140/pjm.1958.8.171CrossRefGoogle Scholar
Smith, J. E. and Winkler, R. L. (2006), The optimizer’s curse: Skepticism and postdecision surprise in decision analysis, Manag. Sci. 52, 311322.10.1287/mnsc.1050.0451CrossRefGoogle Scholar
Soyster, A. L. (1973), Convex programming with set-inclusive constraints and applications to inexact linear programming, Oper. Res. 21, 11541157.10.1287/opre.21.5.1154CrossRefGoogle Scholar
Srivastava, P. R., Wang, Y., Hanasusanto, G. A. and Ho, C. P. (2021), On data-driven prescriptive analytics with side information: A regularized Nadaraya–Watson approach. Available at arXiv:2110.04855.Google Scholar
Staib, M. and Jegelka, S. (2019), Distributionally robust optimization and generalization in kernel methods, in Advances in Neural Information Processing Systems 32 (Wallach, H. et al., eds), Curran Associates, pp. 91349144.Google Scholar
Stieltjes, T.-J. (1894), Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. ( 6 ) 8, 1122.10.5802/afst.108CrossRefGoogle Scholar
Strassen, V. (1965), The existence of probability measures with given marginals, Ann. Math. Statist. 36, 423439.10.1214/aoms/1177700153CrossRefGoogle Scholar
Strohmann, T. and Grudic, G. Z. (2002), A formulation for minimax probability machine regression, in Advances in Neural Information Processing Systems 15 (Becker, S. et al., eds), MIT Press, pp. 785792.Google Scholar
Stromberg, K. R. (2015), An Introduction to Classical Real Analysis, American Mathematical Society.10.1090/chel/376CrossRefGoogle Scholar
Sun, L., Xie, W. and Witten, T. (2023), Distributionally robust fair transit resource allocation during a pandemic, Transport. Sci. 57, 954978.10.1287/trsc.2022.1159CrossRefGoogle Scholar
Sutter, T., Krause, A. and Kuhn, D. (2021), Robust generalization despite distribution shift via minimum discriminating information, in Advances in Neural Information Processing Systems 34 (Ranzato, M. et al., eds), Curran Associates, pp. 2975429767.Google Scholar
Sutter, T., Van Parys, B. P. G. and Kuhn, D. (2024), A Pareto dominance principle for data-driven optimization, Oper. Res. 72, 19761999.10.1287/opre.2021.0609CrossRefGoogle Scholar
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J. and Fergus, R. (2014), Intriguing properties of neural networks, in International Conference on Learning Representations (ICLR 2014).Google Scholar
Talagrand, M. (1996), Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6, 587600.10.1007/BF02249265CrossRefGoogle Scholar
Taşkesen, B., Iancu, D., Koçyiğit, Ç. and Kuhn, D. (2024), Distributionally robust linear quadratic control, in Advances in Neural Information Processing Systems 36 (Oh, A. et al., eds), Curran Associates, pp. 1861318632.Google Scholar
Taşkesen, B., Shafieezadeh-Abadeh, S. and Kuhn, D. (2023a), Semi-discrete optimal transport: Hardness, regularization and numerical solution, Math. Program. 199, 10331106.10.1007/s10107-022-01856-xCrossRefGoogle Scholar
Taşkesen, B., Shafieezadeh-Abadeh, S., Kuhn, D. and Natarajan, K. (2023b), Discrete optimal transport with independent marginals is #P-hard, SIAM J. Optim. 33, 589614.10.1137/22M1482044CrossRefGoogle Scholar
Taşkesen, B., Yue, M.-C., Blanchet, J., Kuhn, D. and Nguyen, V. A. (2021), Sequential domain adaptation by synthesizing distributionally robust experts, in 38th International Conference on Machine Learning, Vol. 139 of Proceedings of Machine Learning Research, PMLR, pp. 1016210172.Google Scholar
Tchen, A. H. (1980), Inequalities for distributions with given marginals, Ann . Probab. 8, 814827.10.1214/aop/1176994668CrossRefGoogle Scholar
Terpin, A., Lanzetti, N. and Dörfler, F. (2024), Dynamic programming in probability spaces via optimal transport, SIAM J. Control Optim. 62, 11831206.10.1137/23M1560902CrossRefGoogle Scholar
Terpin, A., Lanzetti, N., Yardim, B., Dörfler, F. and Ramponi, G. (2022), Trust region policy optimization with optimal transport discrepancies: Duality and algorithm for continuous actions, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 1978619797.Google Scholar
Tong, Y. L. (1980), Probability Inequalities in Multivariate Distributions, Academic Press.Google Scholar
Tramèr, F., Papernot, N., Goodfellow, I., Boneh, D. and McDaniel, P. (2017), The space of transferable adversarial examples. Available at arXiv:1704.03453.Google Scholar
Tsang, M. Y. and Shehadeh, K. S. (2024), On the trade-off between distributional belief and ambiguity: Conservatism, finite-sample guarantees, and asymptotic properties. Available at arXiv:2410.19234.Google Scholar
Tu, K., Chen, Z. and Yue, M.-C. (2024), A max-min-max algorithm for large-scale robust optimization. Available at arXiv:2404.05377.Google Scholar
Tu, Z., Zhang, J. and Tao, D. (2019), Theoretical analysis of adversarial learning: A minimax approach, in Advances in Neural Information Processing Systems 32 (Wallach, H. et al., eds), Curran Associates, pp. 1228012290.Google Scholar
Van Der Vaart, A. and Wellner, J. A. (2000), Preservation theorems for Glivenko–Cantelli and uniform Glivenko–Cantelli classes, in High Dimensional Probability II (Giné, E., Mason, D. M. and Wellner, J. A., eds), Springer, pp. 115133.10.1007/978-1-4612-1358-1_9CrossRefGoogle Scholar
Van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press.10.1017/CBO9780511802256CrossRefGoogle Scholar
van Eekelen, W. J. E. C., den Hertog, D. and van Leeuwaarden, J. S. H. (2022), MAD dispersion measure makes extremal queue analysis simple, INFORMS J. Comput. 34, 16811692.10.1287/ijoc.2021.1130CrossRefGoogle Scholar
van Eekelen, W. J., Hanasusanto, G. A., Hasenbein, J. J. and van Leeuwaarden, J. S. (2025), Second-order bounds for the M/M/s queue with random arrival rate, Queueing Syst. 109, art. 3.10.1007/s11134-024-09931-0CrossRefGoogle Scholar
Van Leeuwaarden, J. S. H. and Stegehuis, C. (2021), Robust subgraph counting with distribution-free random graph analysis, Phys. Rev. E 104, art. 044313.10.1103/PhysRevE.104.044313CrossRefGoogle ScholarPubMed
Van Parys, B. P. G. (2024), Efficient data-driven optimization with noisy data, Oper. Res. Lett. 54, art. 107089.10.1016/j.orl.2024.107089CrossRefGoogle Scholar
Van Parys, B. P. G. and Golrezaei, N. (2024), Optimal learning for structured bandits, Manag . Sci. 70, 39513998.Google Scholar
Van Parys, B. P. G., Goulart, P. J. and Embrechts, P. (2016a), Fréchet inequalities via convex optimization. Available at optimization-online.org:2016/07/5536.pdf.Google Scholar
Van Parys, B. P. G., Goulart, P. J. and Kuhn, D. (2016b), Generalized Gauss inequalities via semidefinite programming, Math. Program. 156, 271302.10.1007/s10107-015-0878-1CrossRefGoogle Scholar
Van Parys, B. P. G., Goulart, P. J. and Morari, M. (2019), Distributionally robust expectation inequalities for structured distributions, Math. Program. 173, 251280.10.1007/s10107-017-1220-xCrossRefGoogle Scholar
Van Parys, B. P. G., Kuhn, D., Goulart, P. J. and Morari, M. (2015), Distributionally robust control of constrained stochastic systems, IEEE Trans. Automat. Control 61, 430442.Google Scholar
Van Parys, B. P. G., Esfahani, P. Mohajerin and Kuhn, D. (2021), From data to decisions: Distributionally robust optimization is optimal, Manag. Sci. 67, 33873402.10.1287/mnsc.2020.3678CrossRefGoogle Scholar
Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer.Google Scholar
Varadhan, S. R. S. (1966), Asymptotic probabilities and differential equations, Commun . Pure Appl. Math. 19, 261286.10.1002/cpa.3160190303CrossRefGoogle Scholar
Vershynin, R. (2018), High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge University Press.10.1017/9781108231596CrossRefGoogle Scholar
Villani, C. (2003), Topics in Optimal Transportation, American Mathematical Society.10.1090/gsm/058CrossRefGoogle Scholar
Villani, C. (2008), Optimal Transport: Old and New, Springer.Google Scholar
Vincent, F., Azizian, W., Malick, J. and Iutzeler, F. (2024), A library for Wasserstein distributionally robust machine learning. Available at arXiv:2410.21231.Google Scholar
Volpi, R., Namkoong, H., Sener, O., Duchi, J., Murino, V. and Savarese, S. (2018), Generalizing to unseen domains via adversarial data augmentation, in Advances in Neural Information Processing Systems 31 (Bengio, S. et al., eds), Curran Associates, pp. 53395349.Google Scholar
Vu, H., Tran, T., Yue, M.-C. and Nguyen, V. A. (2022), Distributionally robust fair principal components via geodesic descents, in International Conference on Learning Representations (ICLR 2022).Google Scholar
Wainwright, M. J. (2019), High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cambridge University Press.10.1017/9781108627771CrossRefGoogle Scholar
Wang, B. and Wang, R. (2011), The complete mixability and convex minimization problems with monotone marginal densities, J. Multivariate Anal. 102, 13441360.10.1016/j.jmva.2011.05.002CrossRefGoogle Scholar
Wang, C., Gao, R., Wei, W., Shafie-khah, M., Bi, T. and Catalao, J. P. (2018), Risk-based distributionally robust optimal gas-power flow with Wasserstein distance, IEEE Trans. Power Syst. 34, 21902204.10.1109/TPWRS.2018.2889942CrossRefGoogle Scholar
Wang, I., Becker, C., Van Parys, B. and Stellato, B. (2024a), Mean robust optimization, Math. Program. Available at doi:10.1007/s10107-024-02170-4.CrossRefGoogle Scholar
Wang, I., Becker, C., Van Parys, B. P. G. and Stellato, B. (2023), Learning decision-focused uncertainty sets in robust optimization. Available at arXiv:2305.19225.Google Scholar
Wang, J., Gao, R. and Xie, Y. (2021), Sinkhorn distributionally robust optimization. Available at arXiv:2109.11926.Google Scholar
Wang, J., Gao, R. and Xie, Y. (2024b), Regularization for adversarial robust learning. Available at arXiv:2408.09672.Google Scholar
Wang, R., Peng, L. and Yang, J. (2013), Bounds for the sum of dependent risks and worst value-at-risk with monotone marginal densities, Finance Stoch. 17, 395417.10.1007/s00780-012-0200-5CrossRefGoogle Scholar
Wang, S. (2024), The power of simple menus in robust selling mechanisms, Manag. Sci. Available at doi:10.1287/mnsc.2023.03738.CrossRefGoogle Scholar
Wang, S., Chen, Z. and Liu, T. (2020), Distributionally robust hub location, Transport. Sci. 54, 11891210.10.1287/trsc.2019.0948CrossRefGoogle Scholar
Wang, S., Liu, S. and Zhang, J. (2024c), Minimax regret robust screening with moment information, Manuf . Service Oper. Manag. 26, 9921012.10.1287/msom.2023.0072CrossRefGoogle Scholar
Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B. and Gu, Q. (2019), On the convergence and robustness of adversarial training, in 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, PMLR, pp. 65866595.Google Scholar
Wang, Y., Nguyen, V. A. and Hanasusanto, G. A. (2024d), Wasserstein robust classification with fairness constraints, Manuf. Service Oper. Manag. 26, 15671585.10.1287/msom.2022.0230CrossRefGoogle Scholar
Wang, Y., Prasad, M. N., Hanasusanto, G. A. and Hasenbein, J. J. (2024e), Distributionally robust observable strategic queues, Stoch. Syst. 14, 229361.10.1287/stsy.2022.0009CrossRefGoogle Scholar
Wang, Z., Glynn, P. W. and Ye, Y. (2016), Likelihood robust optimization for data-driven problems, Comput. Manag. Sci. 13, 241261.10.1007/s10287-015-0240-3CrossRefGoogle Scholar
Weed, J. and Bach, F. (2019), Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance, Bernoulli 25, 26202648.10.3150/18-BEJ1065CrossRefGoogle Scholar
Whittle, P. (1990), Risk-Sensitive Optimal Control, Wiley.Google Scholar
Wiesemann, W., Kuhn, D. and Rustem, B. (2013), Robust Markov decision processes, Math. Oper. Res. 38, 153183.10.1287/moor.1120.0566CrossRefGoogle Scholar
Wiesemann, W., Kuhn, D. and Sim, M. (2014), Distributionally robust convex optimization, Oper. Res. 62, 13581376.10.1287/opre.2014.1314CrossRefGoogle Scholar
Wozabal, D. (2012), A framework for optimization under ambiguity, Ann . Oper. Res. 193, 2147.10.1007/s10479-010-0812-0CrossRefGoogle Scholar
Wozabal, D. (2014), Robustifying convex risk measures for linear portfolios: A nonparametric approach, Oper. Res. 62, 13021315.10.1287/opre.2014.1323CrossRefGoogle Scholar
Wu, Q., Li, J. Y.-M. and Mao, T. (2022), On generalization and regularization via Wasserstein distributionally robust optimization. Available at arXiv:2212.05716.10.2139/ssrn.4299601CrossRefGoogle Scholar
Wu, S., Sun, S., Camilleri, J. A., Eickhoff, S. B. and Yu, R. (2021), Better the devil you know than the devil you don’t: Neural processing of risk and ambiguity, NeuroImage 236, art. 118109.10.1016/j.neuroimage.2021.118109CrossRefGoogle Scholar
Xie, W. (2020), Tractable reformulations of distributionally robust two-stage stochastic programs over the type-∞ Wasserstein ball, Oper. Res. Lett. 48, 513523.10.1016/j.orl.2020.06.003CrossRefGoogle Scholar
Xie, W. (2021), On distributionally robust chance constrained programs with Wasserstein distance, Math. Program. 186, 115155.10.1007/s10107-019-01445-5CrossRefGoogle Scholar
Xie, W., Ahmed, S. and Jiang, R. (2022), Optimized Bonferroni approximations of distributionally robust joint chance constraints, Math. Program. 191, 79112.10.1007/s10107-019-01442-8CrossRefGoogle Scholar
Xie, W. and Ahmed, S. (2017), Distributionally robust chance constrained optimal power flow with renewables: A conic reformulation, IEEE Trans. Power Syst. 33, 18601867.10.1109/TPWRS.2017.2725581CrossRefGoogle Scholar
Xin, L. and Goldberg, D. A. (2021), Time (in)consistency of multistage distributionally robust inventory models with moment constraints, European J. Oper. Res. 289, 11271141.10.1016/j.ejor.2020.07.041CrossRefGoogle Scholar
Xin, L. and Goldberg, D. A. (2022), Distributionally robust inventory control when demand is a martingale, Math. Oper. Res. 47, 23872414.10.1287/moor.2021.1213CrossRefGoogle Scholar
Xu, C., Lee, J., Cheng, X. and Xie, Y. (2024), Flow-based distributionally robust optimization, IEEE J. Select. Areas Inform. Theory 5, 6277.10.1109/JSAIT.2024.3370699CrossRefGoogle Scholar
Xu, H., Caramanis, C. and Mannor, S. (2009), Robustness and regularization of support vector machines, J. Mach. Learn. Res. 10, 14851510.Google Scholar
Xu, H., Caramanis, C. and Mannor, S. (2012a), A distributional interpretation of robust optimization, Math. Oper. Res. 37, 95110.10.1287/moor.1110.0531CrossRefGoogle Scholar
Xu, H., Caramanis, C. and Mannor, S. (2012b), Optimization under probabilistic envelope constraints, Oper. Res. 60, 682699.10.1287/opre.1120.1054CrossRefGoogle Scholar
Yakubovich, V. A. (1971), S-procedure in nonlinear control theory (in Russian), Vestnik Leninggradskogo Universiteta pp. 6277.Google Scholar
Yang, I. (2018), A dynamic game approach to distributionally robust safety specifications for stochastic systems, Automatica 94, 94101.10.1016/j.automatica.2018.04.022CrossRefGoogle Scholar
Yang, I. (2020), Wasserstein distributionally robust stochastic control: A data-driven approach, IEEE Trans. Automat. Control 66, 38633870.10.1109/TAC.2020.3030884CrossRefGoogle Scholar
Yang, J., Zhang, L., Chen, N., Gao, R. and Hu, M. (2022), Decision-making with side information: A causal transport robust approach. Available at optimization-online.org:2022/10/DRO_with_side_info.pdf.Google Scholar
Yang, P. and Chen, B. (2018), Robust Kullback–Leibler divergence and universal hypothesis testing for continuous distributions, IEEE Trans. Inform. Theory 65, 23602373.10.1109/TIT.2018.2879057CrossRefGoogle Scholar
Yang, W. and Xu, H. (2016), Distributionally robust chance constraints for non-linear uncertainties, Math. Program. 155, 231265.10.1007/s10107-014-0842-5CrossRefGoogle Scholar
Yankoğlu, I., Gorissen, B. L. and den Hertog, D. (2019), A survey of adjustable robust optimization, European J. Oper. Res. 277, 799813.10.1016/j.ejor.2018.08.031CrossRefGoogle Scholar
Yu, Y.-L., Li, Y., Schuurmans, D. and Szepesvári, C. (2009), A general projection property for distribution families, in Advances in Neural Information Processing Systems 22 (Bengio, Y. et al., eds), Curran Associates, pp. 22322240.Google Scholar
Yu, Y., Lin, T., Mazumdar, E. V. and Jordan, M. (2022), Fast distributionally robust learning with variance-reduced min-max optimization, in 25th International Conference on Artificial Intelligence and Statistics, Vol. 151 of Proceedings of Machine Learning Research, PMLR, pp. 12191250.Google Scholar
Yue, J., Chen, B. and Wang, M.-C. (2006), Expected value of distribution information for the newsvendor problem, Oper. Res. 54, 11281136.10.1287/opre.1060.0318CrossRefGoogle Scholar
Yue, M.-C., Kuhn, D. and Wiesemann, W. (2022), On linear optimization over Wasserstein balls, Math. Program. 195, 11071122.10.1007/s10107-021-01673-8CrossRefGoogle Scholar
Zames, G. (1966), Robust control theory, Proc. IEEE 54, 14421451.Google Scholar
Zeitouni, O. and Gutman, M. (1991), On universal hypotheses testing via large deviations, IEEE Trans. Inform. Theory 37, 285290.10.1109/18.75244CrossRefGoogle Scholar
Zeng, Y. and Lam, H. (2022), Generalization bounds with minimal dependency on hypothesis class via distributionally robust optimization, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 2757627590.Google Scholar
Zhang, A. Y. and Zhou, H. H. (2020), Theoretical and computational guarantees of mean field variational inference for community detection, Ann. Statist. 48, 25752598.10.1214/19-AOS1898CrossRefGoogle Scholar
Zhang, L., Yang, J. and Gao, R. (2024a), Optimal robust policy for feature-based newsvendor, Manag . Sci. 70, 23152329.Google Scholar
Zhang, L., Yang, J. and Gao, R. (2024b), A short and general duality proof for Wasserstein distributionally robust optimization, Oper. Res. Available at doi:10.1287/opre.2023.0135.CrossRefGoogle Scholar
Zhang, Y., Jiang, R. and Shen, S. (2018), Ambiguous chance-constrained binary programs under mean–covariance information, SIAM J. Optim. 28, 29222944.10.1137/17M1158707CrossRefGoogle Scholar
Zhao, C. and Guan, Y. (2018), Data-driven risk-averse stochastic optimization with Wasserstein metric, Oper. Res. Lett. 46, 262267.10.1016/j.orl.2018.01.011CrossRefGoogle Scholar
Zhao, C. and Jiang, R. (2017), Distributionally robust contingency-constrained unit commitment, IEEE Trans. Power Syst. 33, 94102.10.1109/TPWRS.2017.2699121CrossRefGoogle Scholar
Zhen, J., Kuhn, D. and Wiesemann, W. (2023), A unified theory of robust and distributionally robust optimization via the primal-worst-equals-dual-best principle, Oper. Res. 73, 862878.10.1287/opre.2021.0268CrossRefGoogle Scholar
Zhou, K. and Doyle, J. C. (1999), Essentials of Robust Control, Prentice Hall.Google Scholar
Zhou, K., Doyle, J. C. and Glover, K. (1996), Robust and Optimal Control, Prentice Hall.Google Scholar
Zhu, B., Jiao, J. and Steinhardt, J. (2022a), Generalized resilience and robust statistics, Ann . Statist. 50, 22562283.10.1214/22-AOS2186CrossRefGoogle Scholar
Zhu, J.-J., Jitkrittum, W., Diehl, M. and Schölkopf, B. (2020), Worst-case risk quantification under distributional ambiguity using kernel mean embedding in moment problem, in 59th IEEE Conference on Decision and Control (CDC), pp. 34573463.Google Scholar
Zhu, J.-J., Jitkrittum, W., Diehl, M. and Schölkopf, B. (2021), Kernel distributionally robust optimization: Generalized duality theorem and stochastic approximation, in 24th International Conference on Artificial Intelligence and Statistics, Vol. 130 of Proceedings of Machine Learning Research, PMLR, pp. 280288.Google Scholar
Zhu, L., Gürbüzbalaban, M. and Ruszczyński, A. (2023), Distributionally robust learning with weakly convex losses: Convergence rates and finite-sample guarantees. Available at arXiv:2301.06619.Google Scholar
Zhu, S., Xie, L., Zhang, M., Gao, R. and Xie, Y. (2022b), Distributionally robust weighted k-nearest neighbors, in Advances in Neural Information Processing Systems 35 (Koyejo, S. et al., eds), Curran Associates, pp. 2908829100.Google Scholar
Zorzi, M. (2014), Multivariate spectral estimation based on the concept of optimal prediction, IEEE Trans. Automat. Control 60, 16471652.10.1109/TAC.2014.2359713CrossRefGoogle Scholar
Zorzi, M. (2016), Robust Kalman filtering under model perturbations, IEEE Trans. Automat. Control 62, 29022907.10.1109/TAC.2016.2601879CrossRefGoogle Scholar
Zorzi, M. (2017a), Convergence analysis of a family of robust Kalman filters based on the contraction principle, SIAM J. Control Optim. 55, 31163131.10.1137/16M1099078CrossRefGoogle Scholar
Zorzi, M. (2017b), On the robustness of the Bayes and Wiener estimators under model uncertainty, Automatica 83, 133140.10.1016/j.automatica.2017.06.005CrossRefGoogle Scholar
Zuluaga, L. F. and Pena, J. F. (2005), A conic programming approach to generalized Tchebycheff inequalities, Math. Oper. Res. 30, 369388.10.1287/moor.1040.0124CrossRefGoogle Scholar
Zymler, S., Kuhn, D. and Rustem, B. (2013a), Distributionally robust joint chance constraints with second-order moment information, Math. Program. 137, 167198.10.1007/s10107-011-0494-7CrossRefGoogle Scholar
Zymler, S., Kuhn, D. and Rustem, B. (2013b), Worst-case value at risk of nonlinear portfolios, Manag . Sci. 59, 172188.Google Scholar