Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:11:36.237Z Has data issue: false hasContentIssue false

Visually evoked potentials, NMDA receptors and the magnocellular system in schizophrenia

Published online by Cambridge University Press:  24 June 2014

Bernt C. Skottun
Affiliation:
Ullevålsalleen 4C, 0852 Oslo, Norway
John R. Skoyles
Affiliation:
Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK Centre for Philosophy of Natural and Social Science (CPNSS), London School of Economics, London, UK

Extract

Background: It has been claimed that schizophrenia can be linked to the magnocellular system by way of N-methyl-d-aspartate (NMDA) receptors. The present report examines this claim.

Methods: A review is made of relevant research literature.

Results: The NMDA studies that have been referenced to connect visual deficits in schizophrenia to the magnocellular system are based on the cat, a species whose visual system is fundamentally different from that of primates. The cat visual system cannot easily be divided into magno- and a parvocellular portions.

Conclusions: Owing to the substantial differences between the visual systems of cats and primates, it is difficult to link sensory abnormalities in schizophrenia specifically to the magnocellular system based on data from the cat.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hendry, SH, Reid, RC.The koniocellular pathway in primate vision. Annu Rev Neurosci 2000;23:127153.CrossRefGoogle ScholarPubMed
2.Merigan, WH, Maunsell, JH.How parallel are the primate visual pathways? Annu Rev Neurosci 1993;16:369402.CrossRefGoogle ScholarPubMed
3.Green, MF, Nuechterlein, KH, Mintz, J.Backward masking in schizophrenia and mania. II. Specifying the visual channels. Arch Gen Psychiatry 1994;51:945951.CrossRefGoogle ScholarPubMed
4.Butler, PD, Zemon, V, Schechter, I et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 2005;62:495504.CrossRefGoogle ScholarPubMed
5.Butler, PD, Javitt, DC.Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 2005;18:151157.CrossRefGoogle ScholarPubMed
6.Skottun, BC.The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Res 2000;40:111127.CrossRefGoogle ScholarPubMed
7.Skottun, BC, Skoyles, JR.Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res 2007;47:29232933.CrossRefGoogle ScholarPubMed
8.Gutherie, AH, McDowell, JE, Hammond, BR Jr.Scotopic sensitivity in schizophrenia. Schizophr Res 2006;84:378385.CrossRefGoogle ScholarPubMed
9.Skottun, BC, Skoyles, JR.Are masking abnormalities in schizophrenia limited to backward masking? Int J Neurosci 2009;119:88104.CrossRefGoogle ScholarPubMed
10.Skottun, BC, Skoyles, JR.The time course of visual backward masking deficits in schizophrenia. J Integr Neurosci 2011;10:3345.CrossRefGoogle ScholarPubMed
11.Selemon, LD, Begovic, A.Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007;151:110.CrossRefGoogle ScholarPubMed
12.Dorph-Petersen, KA, Caric, D, Saghafi, R, Zhang, W, Sampson, AR, Lewis, DA.Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 2009;117:369384.CrossRefGoogle ScholarPubMed
13.Butler, PD, Silverstein, SM, Dakin, SC.Visual perception and its impairment in schizophrenia. Biol Psychiatry 2008;64:4047.CrossRefGoogle ScholarPubMed
14.Javitt, DC.When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 2009;5:249275.CrossRefGoogle ScholarPubMed
15.Kwon, YH, Esguerra, M, Sur, M.NMDA and non-NMDA receptors mediate visual responses of neurons in the cat's lateral geniculate nucleus. J Neurophysiol 1991;66:414428.CrossRefGoogle ScholarPubMed
16.Kwon, YH, Nelson, SB, Toth, LJ, Sur, M.Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. J Neurophysiol 1992;68:182196.CrossRefGoogle ScholarPubMed
17.Kantrowitz, JT, Javitt, DC.N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010;83:108121.CrossRefGoogle ScholarPubMed
18.Levitt, JB, Schumer, RA, Sherman, SM, Spear, PD, Movshon, JA.Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. J Neurophysiol 2001;85:21112129.CrossRefGoogle ScholarPubMed
19.Skottun, BC, Skoyles, JR.On identifying magnocellular and parvocellular responses on the basis of contrast-response functions. Schizophrenia Bull 2011;37:2326.CrossRefGoogle ScholarPubMed
20.Shapley, R, Perry, VH.Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 1986;9:229235.CrossRefGoogle Scholar
21.Livingstone, MS, Hubel, DH.Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 1987;7:34163468.CrossRefGoogle ScholarPubMed
22.Kaplan, E, Shapley, RM.X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol 1982;330:125143.CrossRefGoogle ScholarPubMed
23.Hubel, DH, Wiesel, TN.Integrative action in the cat's lateral geniculate body. J Physiol 1961;155:385398.CrossRefGoogle ScholarPubMed
24.Enroth-Cugell, C, Robson, JG.The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 1966;187:517552.CrossRefGoogle ScholarPubMed
25.Dreher, B, Fukada, Y, Rodieck, RW.Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. J Physiol 1976;258:433452.CrossRefGoogle ScholarPubMed
26.Sherman, SM, Wilson, JR, Kaas, JH, Webb, SV.X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science 1976;192:475477.CrossRefGoogle ScholarPubMed
27.Crook, JD, Peterson, BB, Packer, OS, Robinson, FR, Troy, JB, Dacey, DM.Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J Neurosci 2008;28:1127711291.CrossRefGoogle ScholarPubMed
28.Blakemore, C, Vital-Durand, F.Organization and post-natal development of the monkey's lateral geniculate nucleus. J Physiol 1986;380:453491.CrossRefGoogle ScholarPubMed
29.Marrocco, RT, McClurkin, JW, Young, RA.Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. J Neurosci 1982;2:12751291.CrossRefGoogle ScholarPubMed
30.Shapley, R, Kaplan, E, Soodak, R.Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 1981;292:543545.CrossRefGoogle ScholarPubMed
31.Saul, AB.Lagged cells in alert monkey lateral geniculate nucleus. Vis Neurosci 2008;25:647659.CrossRefGoogle ScholarPubMed
32.Dacey, DM, Brace, S.A coupled network for parasol but not midget ganglion cells in the primate retina. Vis Neurosci 1992;9:279290.CrossRefGoogle Scholar
33.Leventhal, AG, Rodieck, RW, Dreher, B.Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 1981;213:11391142.CrossRefGoogle ScholarPubMed
34.Sun, H, Smithson, HE, Zaidi, Q, Lee, BB.Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Vis Neurosci 2006;23:441446.CrossRefGoogle ScholarPubMed
35.Goodchild, AK, Ghosh, KK, Martin, PR.Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, Macaque Monkey, cat, and the Marmoset Callithrix jacchus. J Comp Neurol 1996;366:5575.3.0.CO;2-J>CrossRefGoogle Scholar
36.Heggelund, P, Hartveit, E.Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. J Neurophysiol 1990;63:13471360.CrossRefGoogle ScholarPubMed
37.Rivadulla, C, Sharma, J, Sur, M.Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J Neurosci 2001;21:17101719.CrossRefGoogle ScholarPubMed
38.Skottun, BC, Skoyles, JR.Is coherent motion an appropriate test for magnocellular sensitivity? Brain Cognit 2006;61:172180.CrossRefGoogle ScholarPubMed
39.Skottun, BC.On the use of visual motion perception to assess magnocellular integrity. J Integr Neurosci 2011;10:1532.CrossRefGoogle ScholarPubMed
40.Merigan, WH, Byrne, CE, Maunsell, JH.Does primate motion perception depend on the magnocellular pathway? J Neurosci 1991;11:34223429.CrossRefGoogle ScholarPubMed
41.Malpeli, JG, Schiller, PH, Colby, CL.Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. J Neurophysiol 1981;46:11021119.CrossRefGoogle ScholarPubMed
42.Lachica, EA, Beck, PD, Casagrande, VA.Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Nat Acad Sci U.S.A. 1992;89:35663570.CrossRefGoogle ScholarPubMed
43.Levitt, JB, Yoshioka, T, Lund, JS.Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. J Compar Neurol 1994;342:551570.CrossRefGoogle ScholarPubMed
44.Martin, KA.Parallel pathways converge. Current Biol 1992;2:555557.CrossRefGoogle ScholarPubMed
45.Merigan, WH, Maunsell, JH.Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 1990;5:347352.CrossRefGoogle ScholarPubMed
46.Nealey, TA, Maunsell, JH.Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci 1994;14:20692079.CrossRefGoogle Scholar
47.Sawatari, A, Callaway, EM.Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 1996;380:442446.CrossRefGoogle ScholarPubMed
48.Sincich, LC, Horton, JC.Divided by cytochrome oxidase: a map of the projections from V1 to V2 in Macaques. Science 2002;295:17341737.CrossRefGoogle ScholarPubMed
49.Vidyasagar, TR, Kulikowski, JJ, Lipnicki, DM, Dreher, B.Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. Eur J Neurosci 2002;16:945956.CrossRefGoogle ScholarPubMed
50.Ohzawa, I, Sclar, G, Freeman, RD.Contrast gain control in the cat's visual system. J Neurophysiol 1985;54:651667.CrossRefGoogle ScholarPubMed
51.Solomon, SG, Peirce, JW, Dhruv, NT, Lennie, P.Profound contrast adaptation early in the visual pathway. Neuron 2004;42:155162.CrossRefGoogle ScholarPubMed
52.Maffei, L, Fiorentini, A, Bisti, S.Neural correlate of perceptual adaptation to gratings. Science 1973;182:10361038.CrossRefGoogle ScholarPubMed
53.Movshon, JA, Lennie, P.Pattern-selective adaptation in visual cortical neurones. Nature 1979;278:850852.CrossRefGoogle ScholarPubMed
54.Shou, T, Li, X, Zhou, Y, Hu, B.Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings. Vis Neurosci 1996;13:605613.CrossRefGoogle ScholarPubMed