Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:46:53.085Z Has data issue: false hasContentIssue false

The influence of folate serum levels on depressive mood and mental processing in patients with epilepsy treated with enzyme-inducing anti-epileptic drugs

Published online by Cambridge University Press:  24 June 2014

J. Rösche*
Affiliation:
Department of Neurology and Epileptology (Department of Psychiatry I, University of Ulm), Die Weissenau, Ravensburg, Germany
C. Uhlmann
Affiliation:
Department of Neurology and Epileptology (Department of Psychiatry I, University of Ulm), Die Weissenau, Ravensburg, Germany
R. Weber
Affiliation:
Department of Neurology and Epileptology (Department of Psychiatry I, University of Ulm), Die Weissenau, Ravensburg, Germany
W. Fröscher
Affiliation:
Department of Neurology and Epileptology (Department of Psychiatry I, University of Ulm), Die Weissenau, Ravensburg, Germany
*
Department of Neurology and Epileptology (Department of Psychiatry I, University of Ulm), Weingartshoferstr. 2, 88214 Ravensburg, Germany. Fax: 0049 75176012610; E-mail: Johannes.Roesche@ZfP-Weissenau.de

Abstract

Background:

Folate deficiency is common in patients with epilepsy and also occurs in patients with depression or cognitive deficits.

Objective:

This study investigates whether low serum folate levels may contribute to depressive mood and difficulties in mental processing in patients with epilepsy treated with anti-epileptic drugs inducing the cytochrome P450.

Methods:

We analysed the serum folate levels, the score in the Self Rating Depression Scale (SDS) and the results of a bedside test in mental processing in 54 patients with epilepsy.

Results:

There was a significant negative correlation between the serum folate levels and the score in SDS and significant positive correlations between the score in SDS and the time needed to process an interference task or a letter-reading task.

Conclusions:

Low serum folate levels may contribute to depressive mood and therefore to difficulties in mental processing. Further studies utilizing total plasma homocysteine as a sensitive measure of functional folate deficiency and more elaborate tests of mental processing are required to elucidate the impact of folate metabolism on depressive mood and cognitive function in patients with epilepsy.

Type
Research Article
Copyright
Copyright © 2003 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Victoroff, JI, Benson, DF, Engel, JJr, Grafton, S, Mazziotta, JC.Interictal depression in patients with medically intractable complex partial seizures: electroencephalography and cerebral metabolic correlates. Ann Neurol 1990;28: 221. Google Scholar
Hermann, BP, Whitman, S.Psychosocial predictors of interictal depression. J Epilepsy 1989;2: 231237. CrossRefGoogle Scholar
Mendez, MF, Cummings, JL, Benson, DF.Depression in epilepsy. Significance and phenomenology. Arch Neurol 1986;34: 766770. CrossRefGoogle Scholar
Lee, S, Chow, CC, Shek, CC, Wing, YK, Chen, CN.Folate concentration in Chinese psychiatric outpatients on long-term lithium treatment. J Affect Disord 1992;24: 265279.CrossRefGoogle ScholarPubMed
Fröscher, W, Maier, V, Laage, Met al. Folate deficiency, anticonvulsant drugs, and psychiatric morbidity. Clin Neuropharmacol 1995;18: 165182.CrossRefGoogle ScholarPubMed
Rösche, J, Uhlmann, C, Fröscher, W.Low serum folate levels as a risk factor of depressive mood in patients with chronic epilepsy. J Neuropsychiatry Clin Neurosci2003;15:64–66. Google Scholar
Kishi, T, Fujita, N, Eguchi, T, Ueda, K.Mechanism for reduction of serum folate by anti-epileptic drugs during prolonged therapy. J Neurol Sci 1997;145: 109112.CrossRefGoogle ScholarPubMed
Apeland, T, Mansoor, MA, Strandjord, RE, Kristensen, O.Homocysteine concentrations and methionine loading in patients on anti-epileptic drugs. Acta Neurol Scand 2001;101: 217223. CrossRefGoogle Scholar
Quinn, CT, Griener, JC, Bottiglieri, T, Hyland, K, Farrow, A, Kamen, BA.Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol 1997;15: 28002806.CrossRefGoogle ScholarPubMed
Steiner, I, Melamed, E. Folic acid in the nervous system [Letter]. Neurology 1983;33: 1634.CrossRefGoogle Scholar
Kishi, T, Tanaka, Y, Ueda, K.Evidence for hypomethylation in two children with acute lymphoblastic leukemia and leukencephalopathy. Cancer 2000;89: 925931.3.0.CO;2-W>CrossRefGoogle Scholar
Mahler, ME, Benson, DF.Cognitive dysfunction in multiple sclerosis: A subcortical dementia?. In: Rao, SM, ed. Neurobehavioural aspects of multiple sclerosis. New York: Oxford University Press, 1990: 88101. Google Scholar
Blumer, D, Wakhlu, S, Montouris, G, Wyler, AR.Treatment of the interictal psychoses. J Clin Psychiatry 2000;61: 110122.CrossRefGoogle ScholarPubMed
Zung, WWK.A self-rating depression scale. Arch Gen Psychiatry 1965;13: 508515.CrossRefGoogle ScholarPubMed
Collegium Internationale Psychiatriae Scalarum, eds. Internationale Skalen für Psychiatrie. Göttingen: Beltz Test Gmbh, 1996. Google Scholar
Lehrl, S.Mehrfachwahl-Wortschatz-Intelligenztest: MWT-A. Erlangen: Perimed, 1991. Google Scholar
Schaaf, S, Kessler, J, Grond, M, Fink, GR.Memorandum-Test. Weinheim: Beltz, 1992. Google Scholar
Benton Sivan, AL, Spreen, O.The revised visual retention test[German edn Der Benton-Test]. Bern: Huber, 1995. Google Scholar
Lehrl, S, Gallwitz, A, Blaha, L, Fischer, B.Kurztest für allgemeine Intelligenz (KAI). Ebersberg: Vless, 1992. Google Scholar
Lehrl, S, Fischer, B. c. I.-Test zur Frühdiagnostik von Demenzen. Ebersberg4, Vless, 1992. Google Scholar
Overall, JE, Schaltenbrand, R.The SKT neuropsychological test battery. J Geriatr Psychiatr Neurol 1992;5: 220227. Google ScholarPubMed
Rösche, J, Uhlmann, C, Nüssle, S, Fröscher, W.Neuropsychologisches Screening und Verhalten im Stationsalltag bei Epilepsiepatienten. Akt Neurol 2001;28: 455459. CrossRefGoogle Scholar
Hermann, BP, Seidenberg, M, Bell, B.Psychiatric comorbidity in chronic epilepsy: identification, consequences, and treatment of major depression. Epilepsia 2000;41 (Suppl. 2):S31S41.CrossRefGoogle ScholarPubMed
Fröscher, W, Möller, A, Uhlmann, C.Psychischer Befund und neue Antiepileptika. Krankenhauspsychiatrie 1999;10 (Suppl. 1):S49S55. Google Scholar
Smith, DB, Obbens, EA.Antifolate-anti-epileptic relationships. In: Botez, MI, Reynolds, RH, eds. Folic acid in neurology, psychiatry and internal medicine. New York: Raven Press, 1979: 267283. Google Scholar
Lezak, MD.Neuropsychological assessment. Oxford: Oxford University Press, 1995. Google ScholarPubMed
Paradiso, S, Hermann, BP, Blumer, D, Davies, K, Robinson, RG.Impact of depressed mood on neuropsychological status in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2001;70: 180185.CrossRefGoogle ScholarPubMed
Feinstein, A, Kartsounis, LD, Miller, DH, Youl, BD, Ron, MA.Clinically isolated lesions of the type seen in multiple sclerosis: a cognitive, psychiatric, and MRI follow up study. J Neurol Neurosurg Psychiatry 1992;55: 869877.CrossRefGoogle ScholarPubMed
Besson, JA, Crawford, JR, Parker, DMet al. Multimodal imaging in Alzheimer's disease. The relationship between MRI, SPECT, cognitive and pathological changes. Br J Psychiatry 1989;127: 216220. Google Scholar
Bottiglieri, T, Laundry, M, Crellin, R, Toone, BK, Carney, MW, Reynolds, EH.Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 2000;68: 228232. CrossRefGoogle Scholar
Schwaninger, M, Ringleb, P, Winter, Ret al. Elevated plasma concentrations of homocysteine in anti-epileptic drug treatment. Epilepsia 1999;40: 345350.CrossRefGoogle Scholar
Ono, H, Sakamoto, A, Eguchi, Tet al. Plasma total homocysteine concentrations in epileptic patients taking anticonvulsants. Metabolism 1997;46: 959962.CrossRefGoogle ScholarPubMed