Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:41:25.633Z Has data issue: false hasContentIssue false

Impact of genetic deletion of MrgD or Mas receptors in depressive-like behaviour in mice

Published online by Cambridge University Press:  18 August 2022

Luca Becari
Affiliation:
Department of Morphology – Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
Maria Luiza A. Fonseca
Affiliation:
Department of Morphology – Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil Neuroscience Program, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
Sthéfanie C. A. Gonçalves
Affiliation:
Department of Physiology and Biophysics – Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
Michael Bader
Affiliation:
Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany Institute for Biology, University of Lübeck, Lübeck, Germany Charité University Medicine Berlin, Berlin, Germany German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
Robson A. S. Santos
Affiliation:
Department of Physiology and Biophysics – Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
Maria José Campagnole-Santos
Affiliation:
Department of Physiology and Biophysics – Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
Lucas M. Kangussu*
Affiliation:
Department of Morphology – Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil Neuroscience Program, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
*
Author for correspondence: Lucas M. Kangussu, Email: lucaskangussu@ufmg.br

Abstract

Objectives:

To evaluate the impact of genetic deletion of receptors of the counterregulatory arms of the renin–angiotensin system in depressive-like behaviours.

Methods:

8–12 weeks-old male mice wild type (WT, C57BL/6J) and mice with genetic deletion of MrgD (MrgD KO) or Mas receptors (Mas KO) were subjected to the Forced Swim Test (FST) and the Tail Suspension Test (TST). Brain-derived neurotrophic factor (BDNF) levels were measured by enzyme-linked immunosorbent assay (ELISA). Blockade of Mas was performed by acute intracerebroventricular (icv) injection of its selective antagonist, A779.

Results:

No statistical difference in immobility time was observed between MrgD KO and WT male animals subjected to FST and TST. However, acute icv injection of A779 significantly increased the immobility time of MrgD KO male mice subjected to FST and TST, suggesting the involvement of Mas in preventing depressive-like behaviour. Indeed, Mas KO male animals showed increased immobility time in FST and TST, evidencing a depressive-like behaviour in these animals, in addition to a reduction in BDNF levels in the prefrontal cortex and hippocampus. No changes in BDNF levels were observed in MrgD KO male animals.

Conclusion:

Our data showed that Mas plays an important role in the neurobiology of depression probably by modulating BDNF expression. On the contrary, lack of MrgD did not alter depressive-like behaviour, which was supported by the lack of alterations in BDNF levels.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida-Santos, AF, de Melo, LA, Gonçalves, SCA, Oliveira Amaral, LB, Santos, RAS, Campagnole-Santos, MJ and Kangussu, LM (2021) Alamandine through MrgD receptor induces antidepressant-like effect in transgenic rats with low brain angiotensinogen. Hormones and Behavior 127, 104880. doi: 10.1016/j.yhbeh.2020.104880.CrossRefGoogle ScholarPubMed
Almeida-Santos, AF, Kangussu, LM and Campagnole-Santos, MJ (2017) The renin-angiotensin system and the neurodegenerative diseases: a brief review. Protein & Peptide Letters 24, 841853. doi: 10.2174/0929866524666170822120258.CrossRefGoogle ScholarPubMed
Almeida-Santos, AF, Kangussu, LM, Moreira, FA, Santos, RAS, Aguiar, DC and Campagnole-Santos, MJ (2016) Anxiolytic- and antidepressant-like effects of angiotensin-(1-7) in hypertensive transgenic (mRen2)27 rats. Clinical Science (London) 130, 12471255. doi: 10.1042/CS20160116.CrossRefGoogle ScholarPubMed
Bader, M (2010) Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annual Review of Pharmacology and Toxicology 50, 439465. doi: 10.1146/annurev.pharmtox.010909.105610.CrossRefGoogle ScholarPubMed
Bild, W and Ciobica, A (2013) Angiotensin-(1-7) central administration induces anxiolytic-like effects in elevated plus maze and decreased oxidative stress in the amygdala. Journal of Affective Disorders 145, 165171. doi: 10.1016/j.jad.2012.07.024.CrossRefGoogle ScholarPubMed
Björkholm, C and Monteggia, LM (2016) BDNF - a key transducer of antidepressant effects. Neuropharmacology 102, 7279. doi: 10.1016/j.neuropharm.2015.10.034.CrossRefGoogle ScholarPubMed
Castagné, V, Porsolt, RD and Moser, P (2009) Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse. European Journal of Pharmacology 616, 128133. doi: 10.1016/j.ejphar.2009.06.018.CrossRefGoogle ScholarPubMed
Chen, L, Faas, GC, Ferando, I and Mody, I (2015) Novel insights into the behavioral analysis of mice subjected to the forced-swim test. Translational Psychiatry. 14, e551. doi: 10.1038/tp.2015.44.CrossRefGoogle Scholar
Chrissobolis, S, Luu, AN, Waldschmidt, RA, Yoakum, ME and D’Souza, MS (2020) Targeting the renin angiotensin system for the treatment of anxiety and depression. Pharmacology Biochemistry and Behavior 199, 173063. doi: 10.1016/j.pbb.2020.173063.CrossRefGoogle ScholarPubMed
Croog, SH, Levine, S, Testa, MA, Brown, B, Bulpitt, CJ, Jenkins, CD, Klerman, GL and Williams, GH (1986) The effects of antihypertensive therapy on the quality of life. New England Journal of Medicine 14, 16571664. doi: 10.1056/NEJM198606263142602.CrossRefGoogle Scholar
Cryan, JF, Mombereau, C and Vassout, A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews 29, 571625. doi: 10.1016/j.neubiorev.2005.03.009.CrossRefGoogle Scholar
de Moura, MM, dos Santos, RAS, Campagnole-Santos, MJ, Todiras, M, Bader, M, Alenina, N and Haibara, AS (2010) Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides 31, 19341939. doi: 10.1016/j.peptides.2010.06.030.CrossRefGoogle ScholarPubMed
Eisch, AJ, Bolaños, CA, de Wit, J, Simonak, RD, Pudiak, CM, Barrot, M, Verhaagen, J and Nestler, EJ (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biological Psychiatry 54, 9941005. doi: 10.1016/j.biopsych.2003.08.003.CrossRefGoogle ScholarPubMed
Ferrario, CM and Schiavone, MT (1989) The renin angiotensin system: importance in physiology and pathology. Cleveland Clinic Journal of Medicine 56, 439446. doi: 10.3949/ccjm.56.4.439.CrossRefGoogle ScholarPubMed
Gard, PR (2004) Angiotensin as a target for the treatment of Alzheimer’s disease, anxiety and depression. Expert Opinion on Therapeutic Targets 8, 714. doi: 10.1517/14728222.8.1.7.CrossRefGoogle ScholarPubMed
Germain, L and Chouinard, G (1988) Treatment of recurrent unipolar major depression with captopril. Biological Psychiatry 23, 637641. doi: 10.1016/0006-3223(88)90010-8.CrossRefGoogle ScholarPubMed
Gironacci, MM, Cerniello, FM, Longo Carbajosa, NA, Goldstein, J and Cerrato, BD (2014) Protective axis of the renin-angiotensin system in the brain. Clinical Science (London) 127, 295306. doi: 10.1042/CS20130450.CrossRefGoogle ScholarPubMed
Gong, J, Shen, Y, Li, P, Zhao, K, Chen, X, Li, Y, Sheng, Y, Zhou, B and Kong, X (2019) Superoxide anions mediate the effects of angiotensin (1-7) analog, alamandine, on blood pressure and sympathetic activity in the paraventricular nucleus. Peptides 118, 170101. doi: 10.1016/j.peptides.2019.170101.CrossRefGoogle ScholarPubMed
Greenberg, ME, Xu, B, Lu, B and Hempstead, BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. Journal of Neuroscience 29, 1276412767. doi: 10.1523/JNEUROSCI.3566-09.2009.CrossRefGoogle ScholarPubMed
Gururajan, A, Reif, A, Cryan, JF and Slattery, DA (2019) The future of rodent models in depression research. Nature Reviews Neuroscience 20, 686701. doi: 10.1038/s41583-019-0221-6.CrossRefGoogle ScholarPubMed
Hami, J, von Bohlen Und Halbach, V, Tetzner, A, Walther, T and von Bohlen Und Halbach, O (2021) Localization and expression of the Mas-related G-protein coupled receptor member D (MrgD) in the mouse brain. Heliyon 7, e08440. doi: 10.1016/j.heliyon.2021.e08440.CrossRefGoogle ScholarPubMed
Huang, EJ and Reichardt, LF (2001) Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience 24, 677736. doi: 10.1146/annurev.neuro.24.1.677.CrossRefGoogle ScholarPubMed
Jackson, L, Eldahshan, W, Fagan, SC and Ergul, A (2018) Within the brain: the renin angiotensin system. International Journal of Molecular Sciences 19, 876. doi: 10.3390/ijms19030876.CrossRefGoogle ScholarPubMed
Jankowski, V, Vanholder, R, van der Giet, M, Tölle, M, Karadogan, S, Gobom, J, Furkert, J, Oksche, A, Krause, E, Tran, TNA, Tepel, M, Schuchardt, M, Schlüter, H, Wiedon, A, Beyermann, M, Bader, M, Todiras, M, Zidek, W, Jankowski, J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arteriosclerosis, Thrombosis, and Vascular Biology 27, 297302. doi: 10.1161/01.ATV.0000253889.09765.5f.CrossRefGoogle ScholarPubMed
Kangussu, LM (2020) Renin-angiotensin system: role in cerebrovascular, neurodegenerative and psychiatric disease. Protein & Peptide Letters 27, 447448. doi: 10.2174/092986652706200610104905.CrossRefGoogle ScholarPubMed
Kangussu, LM, Almeida-Santos, AF, Bader, M, Alenina, N, Fontes, MAP, Santos, RAS, Aguiar, DC and Campagnole-Santos, MJ (2013) Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behavioural Brain Research 257, 2530. doi: 10.1016/j.bbr.2013.09.003.CrossRefGoogle ScholarPubMed
Kangussu, LM and Almeida-Santos, AF (2017) Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1-7): role of the Mas receptor. Behavioural Brain Research 331, 193198. doi: 10.1016/j.bbr.2017.05.026.CrossRefGoogle ScholarPubMed
Kessler, RC (2003) Epidemiology of women and depression. Journal of Affective Disorders 74, 513. doi: 10.1016/s0165-0327(02)00426-3.CrossRefGoogle ScholarPubMed
Kraeuter, A-K, Guest, PC and Sarnyai, Z (2019) The forced swim test for depression-like behavior in rodents. Methods in Molecular Biology 1916, 7580. doi: 10.1007/978-1-4939-8994-2_5.CrossRefGoogle ScholarPubMed
Lautner, RQ, Villela, DC, Fraga-Silva, RA, Silva, N, Verano-Braga, T, Costa-Fraga, F, Jankowski, J, Jankowski, V, Sousa, F, Alzamora, A, Soares, E, Barbosa, C, Kjeldsen, F, Oliveira, A, Braga, J, Savergnini, S, Maia, G, Peluso, AB, Passos-Silva, D, Ferreira, A, Alves, F, Martins, A, Raizada, M, Paula, R, Motta-Santos, D, Kemplin, F, Pimenta, A, Alenina, N, Sinisterra, R, Bader, M, Campagnole-Santos, MJ and Santos, RAS (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circulation Research 112, 11041111. doi: 10.1161/CIRCRESAHA.113.301077.CrossRefGoogle ScholarPubMed
Lazaroni, TLdo N, Bastos, CP, Moraes, MFD, Santos, RS and Pereira, GS (2016) Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiology of Learning and Memory 127, 2733. doi: 10.1016/j.nlm.2015.11.012.CrossRefGoogle ScholarPubMed
Lippoldt, A, Paul, M, Fuxe, K and Ganten, D (1995) The brain renin-angiotensin system: molecular mechanisms of cell to cell interactions. Clinical and Experimental Hypertension 17, 251266. doi: 10.3109/10641969509087069.CrossRefGoogle ScholarPubMed
Lu, B, Pang, PT and Woo, NH (2005) The yin and yang of neurotrophin action. Nature Reviews Neuroscience 6, 603614. doi: 10.1038/nrn1726.CrossRefGoogle ScholarPubMed
Marins, FR, Oliveira, AC, Qadri, F, Motta-Santos, D, Alenina, N, Bader, M, Fontes, MAP and Santos, RAS (2021) Alamandine but not angiotensin-(1-7) produces cardiovascular effects at the rostral insular cortex. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 321, R513R521. doi: 10.1152/ajpregu.00308.2020.CrossRefGoogle Scholar
Martinowich, K, Manji, H and Lu, B (2007) New insights into BDNF function in depression and anxiety. Nature Neuroscience 10, 10891093. doi: 10.1038/nn1971.CrossRefGoogle ScholarPubMed
Mohite, S, Sanches, M and Teixeira, AL (2020) Exploring the evidence implicating the Renin-Angiotensin System (RAS) in the physiopathology of mood disorders. Protein & Peptide Letters 27, 449455. doi: 10.2174/0929866527666191223144000.CrossRefGoogle Scholar
Molendijk, ML and de Kloet, ER (2015) Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology 62, 389391. doi: 10.1016/j.psyneuen.2015.08.028.CrossRefGoogle Scholar
Nakagawa, P and Sigmund, CD (2017) How is the brain renin-angiotensin system regulated? Hypertension 70, 1018. doi: 10.1161/HYPERTENSIONAHA.117.08550.CrossRefGoogle Scholar
Oliveira, AC, Peluso, AA, Qadri, F, Alenina, N, Bader, M and Santos, R (2015) Abstract P110: Mrgd expression in cardiovascular related areas. Hypertension 66, AP110. doi: 10.1161/hyp.66.suppl_1.p110.CrossRefGoogle Scholar
Passos-Silva, DG, Brandan, E and Santos, RAS (2015) Angiotensins as therapeutic targets beyond heart disease. Trends in Pharmacological Sciences 36, 310320. doi: 10.1016/j.tips.2015.03.001.CrossRefGoogle ScholarPubMed
Peiró, C, Vallejo, S, Gembardt, F, Azcutia, V, Heringer-Walther, S, Rodríguez-Mañas, L, Schultheiss, H-P, Sánchez-Ferrer, CF and Walther, T (2007) Endothelial dysfunction through genetic deletion or inhibition of the G protein-coupled receptor Mas: a new target to improve endothelial function. Journal of Hypertension 25, 24212425. doi: 10.1097/HJH.0b013e3282f0143c.CrossRefGoogle ScholarPubMed
Petit-Demouliere, B, Chenu, F and Bourin, M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berlin) 177, 245255. doi: 10.1007/s00213-004-2048-7.CrossRefGoogle ScholarPubMed
Porsolt, RD, Le Pichon, M and Jalfre, M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730732. doi: 10.1038/266730a0.CrossRefGoogle ScholarPubMed
Rabie, MA, Abd El Fattah, MA, Nassar, NN, El-Abhar, HS and Abdallah, DM (2018) Angiotensin 1-7 ameliorates 6-hydroxydopamine lesions in hemiparkinsonian rats through activation of MAS receptor/PI3K/Akt/BDNF pathway and inhibition of angiotensin II type-1 receptor/NF-κB axis. Biochemical Pharmacology 151, 126134. doi: 10.1016/j.bcp.2018.01.047.CrossRefGoogle ScholarPubMed
Saavedra, JM, Ando, H, Armando, I, Baiardi, G, Bregonzio, C, Juorio, A and Macova, M (2005) Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regulatory Peptides 30, 227238. doi: 10.1016/j.regpep.2004.12.015.CrossRefGoogle Scholar
Santos, RA, Campagnole-Santos, MJ, Baracho, NC, Fontes, MA, Silva, LC, Neves, LA, Oliveira, DR, Caligiorne, SM, Rodrigues, AR, Gropen Júnior, C (1994) Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Research Bulletin 35, 293298. doi: 10.1016/0361-9230(94)90104-x.CrossRefGoogle ScholarPubMed
Santos, RAS, Castro, CH, Gava, E, Pinheiro, SVB, Almeida, AP, Paula, RDde, Cruz, JS, Ramos, AS, Rosa, KT, Irigoyen, MC, Bader, M, Alenina, N, Kitten, GT, Ferreira, AJ (2006) Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice. Hypertension 47, 9961002. doi: 10.1161/01.HYP.0000215289.51180.5c.CrossRefGoogle ScholarPubMed
Santos, RAS, Sampaio, WO, Alzamora, AC, Motta-Santos, D, Alenina, N, Bader, M and Campagnole-Santos, MJ (2018) The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiological Reviews 98, 505553. doi: 10.1152/physrev.00023.2016.CrossRefGoogle ScholarPubMed
Santos, RAS, Oudit, GY, Verano-Braga, T, Canta, G, Steckelings, UM and Bader, M (2019) The renin-angiotensin system: going beyond the classical paradigms. American Journal of Physiology-Heart and Circulatory Physiology 316, H958H970. doi: 10.1152/ajpheart.00723.2018.CrossRefGoogle ScholarPubMed
Santos, SHS, Fernandes, LR, Mario, EG, Ferreira, AVM, Pôrto, LCJ, Alvarez-Leite, JI, Botion, LM, Bader, M, Alenina, N, Santos, RAS (2008) Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57, 340347. doi: 10.2337/db07-0953.CrossRefGoogle ScholarPubMed
Shen, Y-H, Chen, X-R, Yang, C-X, Liu, B-X and Li, P (2018) Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats. Peptides 103, 98102. doi: 10.1016/j.peptides.2018.03.014.CrossRefGoogle ScholarPubMed
Silva, AR, Aguilar, EC, Alvarez-Leite, JI, da Silva, RF, Arantes, RME, Bader, M, Alenina, N, Pelli, G, Lenglet, S, Galan, K, Montecucco, F, Mach, F, Santos, SHS, Santos, RAS (2013) Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. American Journal of Physiology-Heart and Circulatory Physiology 305, R132330. doi: 10.1152/ajpregu.00249.2013.Google ScholarPubMed
Soares, ER, Barbosa, CM, Campagnole-Santos, MJ, Santos, RAS and Alzamora, AC (2017) Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1-7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides 96, 6775. doi: 10.1016/j.peptides.2017.09.005.CrossRefGoogle ScholarPubMed
Steru, L, Chermat, R, Thierry, B and Simon, P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berlin) 85, 367370. doi: 10.1007/bf00428203.CrossRefGoogle Scholar
Vian, J, Pereira, C, Chavarria, V, Köhler, C, Stubbs, B, Quevedo, J, Kim, S-W, Carvalho, AF, Berk, M, Fernandes, BS (2017) The renin-angiotensin system: a possible new target for depression. BMC Medicine 15, 144. doi: 10.1186/s12916-017-0916-3.CrossRefGoogle ScholarPubMed
Voigt, JP, Hörtnagl, H, Rex, A, van Hove, L, Bader, M and Fink, H (2005) Brain angiotensin and anxiety-related behavior: the transgenic rat TGR(ASrAOGEN)680. Brain Research 7, 145156. doi: 10.1016/j.brainres.2005.03.048.CrossRefGoogle Scholar
von Bohlen und Halbach, O and Albrecht, D (2006) The CNS renin-angiotensin system. Cell and Tissue Research 326, 599616. doi: 10.1007/s00441-006-0190-8.CrossRefGoogle ScholarPubMed
Walther, T, Balschun, D, Voigt, JP, Fink, H, Zuschratter, W, Birchmeier, C, Ganten, D and Bader, M (1998) Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene. Journal of Biological Chemistry 273, 1186711873. doi: 10.1074/jbc.273.19.11867.CrossRefGoogle ScholarPubMed
Wang, X-L, Iwanami, J, Min, L-J, Tsukuda, K, Nakaoka, H, Bai, H-Y, Shan, B-S, Kan-No, H, Kukida, M, Chisaka, T, Yamauchi, T, Higaki, A, Mogi, M, Horiuchi, M (2016) Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging and Mechanisms of Disease 2, 16024. doi: 10.1038/npjamd.2016.24.CrossRefGoogle ScholarPubMed
Xu, P, Costa-Goncalves, AC, Todiras, M, Rabelo, LA, Sampaio, WO, Moura, MM, Santos, SS, Luft, FC, Bader, M, Gross, V, Alenina, N, Santos, RAS (2008) Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension 51, 574580. doi: 10.1161/HYPERTENSIONAHA.107.102764.CrossRefGoogle ScholarPubMed
Yang, T, Nie, Z, Shu, H, Kuang, Y, Chen, X, Cheng, J, Yu, S and Liu, H (2020) The role of BDNF on neural plasticity in depression. Frontiers in Cellular Neuroscience 14, 82. doi: 10.3389/fncel.2020.00082.CrossRefGoogle ScholarPubMed
Young, D, O’Neill, K, Jessell, T and Wigler, M (1988) Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proceedings of the National Academy of Sciences 85, 53395342. doi: 10.1073/pnas.85.14.5339.CrossRefGoogle ScholarPubMed
Zubenko, GS and Nixon, RA (1984) Mood-elevating effect of captopril in depressed patients. American Journal of Psychiatry 141, 110111. doi: 10.1176/ajp.141.1.110.Google ScholarPubMed
Zylka, MJ, Rice, FL and Anderson, DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 1725. doi: 10.1016/j.neuron.2004.12.015.CrossRefGoogle ScholarPubMed