Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T00:08:21.645Z Has data issue: false hasContentIssue false

Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine

Published online by Cambridge University Press:  04 February 2015

Akiko Matsuura
Affiliation:
Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
Yuko Fujita
Affiliation:
Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
Masaomi Iyo
Affiliation:
Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
Kenji Hashimoto*
Affiliation:
Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
*
Dr. Kenji Hashimoto, Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan. Tel: +81-43-226-2517; Fax: +81-43-226-2561; E-mail: hashimoto@faculty.chiba-u.jp

Abstract

Objective

A recent clinical study demonstrated that sodium benzoate (SB), a prototype competitive d-amino acid oxidase inhibitor, was effective in the treatment of several symptoms, such as positive and negative symptoms, and cognitive impairment in medicated patients with schizophrenia. The objective of the study was to examine the effects of SB on behavioural abnormalities such as pre-pulse inhibition (PPI) deficits and hyperlocomotion in mice after a single administration of the N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine (PCP).

Methods

The effects of SB on behavioural abnormalities (PPI deficits and hyperlocomotion) in mice after PCP administration were examined. Furthermore, effects of SB on tissue levels of amino acids were also examined.

Results

A single oral dose of SB (100, 300, or 1000 mg/kg) attenuated PPI deficits in mice after administration of PCP (3.0 mg/kg, s.c.) in a dose-dependent manner. In contrast, L-701,324 (10 mg/kg), an antagonist at the glycine site of the NMDA receptor, did not affect the effect of SB (1000 mg/kg) on PCP-induced PPI deficits. Furthermore, a single oral dose of SB (1000 mg/kg) significantly attenuated the hyperlocomotion in mice after administration of PCP (3.0 mg/kg, s.c.). However, a single oral dose of SB (1000 mg/kg) caused no changes to d-serine levels in plasma or in the frontal cortex, hippocampus, and striatum of these animals.

Conclusion

This study suggests that SB induced antipsychotic effects in the PCP model of schizophrenia, although it did not increase d-serine levels in the brain.

Type
Original Articles
Copyright
© Scandinavian College of Neuropsychopharmacology 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Javitt, DC, Zukin, SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;148:13011308.Google ScholarPubMed
2.Olney, JW, Farber, NB. NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 1995;13:335345.CrossRefGoogle ScholarPubMed
3.Coyle, JT. The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996;3:241253.CrossRefGoogle ScholarPubMed
4.Krystal, JH, D’Souza, DC, Petrakis, ILet al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 1999;7:125143.CrossRefGoogle ScholarPubMed
5.Hashimoto, K, Okamura, N, Shimizu, E, Iyo, M. Glutamate hypothesis of schizophrenia and approach for possible therapeutic drugs. Cent Nerv Syst Agents Med Chem 2004;4:147154.CrossRefGoogle Scholar
6.Hashimoto, K, Shimizu, E, Iyo, M. Dysfunction of glia-neuron communication in pathophysiology of schizophrenia. Curr Psychiatry Rev 2005;1:151163.CrossRefGoogle Scholar
7.Hashimoto, K. The NMDA receptor hypofunction hypothesis for schizophrenia and glycine modulatory sites on the NMDA receptors as potential therapeutic drugs. Clin Psychopharmacol Neurosci 2006;4:310.Google Scholar
8.Hashimoto, K, Malchow, B, Falkai, P, Schmitt, A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013;263:367377.CrossRefGoogle ScholarPubMed
9.Hashimoto, K. Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets 2014;18:10491063.CrossRefGoogle ScholarPubMed
10.Krystal, JH, Karper, LP, Seibyl, JPet al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994;51:199214.CrossRefGoogle ScholarPubMed
11.Krystal, JH, Perry, EB Jr, Gueorguieva, Ret al. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 2005;62:985994.CrossRefGoogle ScholarPubMed
12.Anand, A, Charney, DS, Oren, DAet al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl- d-aspartate receptor antagonists. Arch Gen Psychiatry 2000;57:270276.CrossRefGoogle ScholarPubMed
13.Jentsch, JD, Roth, RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999;20:201225.CrossRefGoogle Scholar
14.Hashimoto, K, Fujita, Y, Shimizu, E, Iyo, M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 2005;519:114117.CrossRefGoogle Scholar
15.Hashimoto, K, Fujita, Y, Ishima, T, Hagiwara, H, Iyo, M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of tropisetron: role of α7 nicotinic receptors. Eur J Pharmacol 2006;553:191195.CrossRefGoogle ScholarPubMed
16.Hashimoto, K, Fujita, Y, Iyo, M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology 2007;32:514521.CrossRefGoogle ScholarPubMed
17.Hashimoto, K, Fujita, Y, Ishima, T, Chaki, S, Iyo, M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and d-serine. Eur Neuropsychopharmacol 2008;18:414421.CrossRefGoogle ScholarPubMed
18.Hashimoto, K, Ishima, T, Fujita, Yet al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective α7 nicotinic receptor agonist SSR180711. Biol Psychiatry 2008;63:9297.CrossRefGoogle ScholarPubMed
19.Hagiwara, H, Fujita, Y, Ishima, Tet al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors. Eur Neuropsychopharmacol 2008;18:448454.CrossRefGoogle ScholarPubMed
20.Tanibuchi, Y, Fujita, Y, Kohno, Met al. Effects of quetiapine on phencyclidine-induced cognitive deficits in mice: a possible role of α1-adrenoceptors. Eur Neuropsychopharmacol 2009;19:861867.CrossRefGoogle ScholarPubMed
21.Fujita, Y, Ishima, T, Kunitachi, Set al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:336339.CrossRefGoogle ScholarPubMed
22.Shirai, Y, Fujita, Y, Hashimoto, K. Effects of the antioxidant sulforaphane on hyperlocomotion and prepulse inhibition deficits in mice after phencyclidine administration. Clin Psychopharmacol Neurosci 2012;10:9498.CrossRefGoogle ScholarPubMed
23.Coyle, JT, Tsai, G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004;174:3238.CrossRefGoogle Scholar
24.Ferraris, DV, Tsukamoto, T. Recent advances in the discovery of d-amino acid oxidase inhibitors and their therapeutic utility in schizophrenia. Curr Pharm Des 2011;17:103111.CrossRefGoogle ScholarPubMed
25.Labrie, V, Wong, AH, Roder, JC. Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 2012;62:14841503.CrossRefGoogle ScholarPubMed
26.Hashimoto, K, Fukushima, T, Shimizu, Eet al. Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl- d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003;60:572576.CrossRefGoogle ScholarPubMed
27.Hashimoto, K, Engberg, G, Shimizu, E, Nordin, C, Lindstrom, LH, Iyo, M. Reduced d-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:767769.CrossRefGoogle ScholarPubMed
28.Yamada, K, Ohnishi, T, Hashimoto, Ket al. Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and d-serine levels. Biol Psychiatry 2005;57:14931503.CrossRefGoogle ScholarPubMed
29.Bendikov, I, Nadri, C, Amar, Set al. A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 2007;90:4151.CrossRefGoogle ScholarPubMed
30.Calcia, MA, Madeira, C, Alheira, FVet al. Plasma levels of d-serine in Brazilian individuals with schizophrenia. Schizophr Res 2012;142:8387.CrossRefGoogle ScholarPubMed
31.Tsai, G, Yang, P, Chung, LC, Lange, N, Coyle, JT. d-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998;44:10811089.CrossRefGoogle ScholarPubMed
32.Heresco-Levy, U, Javitt, DC, Ebstein, Ret al. d-Serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 2005;57:577585.CrossRefGoogle ScholarPubMed
33.Kantrowitz, JT, Malhotra, AK, Cornblatt, Bet al.. High dose d-serine in the treatment of schizophrenia. Schizophr Res 2010;121:125130.CrossRefGoogle ScholarPubMed
34.Weiser, M, Heresco-Levy, U, Davidson, Met al. A multicenter, add-on randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. J Clin Psychiatry 2012;73:e728e734.CrossRefGoogle ScholarPubMed
35.Ermilov, M, Gelfin, E, Levin, Ret al. A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia. Schizophr Res 2013;150:604605.CrossRefGoogle ScholarPubMed
36.Tsai, GE, Lin, PY. Strategies to enhance N-methyl-d-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 2010;16:522537.CrossRefGoogle ScholarPubMed
37.Verrall, L, Walker, M, Rawlings, Net al. d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 2007;26:16571669.CrossRefGoogle ScholarPubMed
38.Madeira, C, Freitas, ME, Vargas-Lopes, C, Wolosker, H, Panizzutti, R. Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 2008;101:7683.CrossRefGoogle ScholarPubMed
39.Chumakov, I, Blumenfeld, M, Guerassimenko, Oet al. Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002;99:1367513680.CrossRefGoogle ScholarPubMed
40.Kvajo, M, Dhilla, A, Swor, DE, Karayiorgou, M, Gogos, JA. Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatry 2008;13:685696.CrossRefGoogle ScholarPubMed
41.Detera-Wadleigh, SD, McMahon, FJ. G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 2006;60:106114.CrossRefGoogle ScholarPubMed
42.Klein, JR, Kamin, H. Inhibition of the d-amino acid oxidase by benzoic acid. J Biol Chem 1941;138:507512.CrossRefGoogle Scholar
43.Ferraris, D, Duvall, B, Ko, YSet al. Synthesis and biological evaluation of d-amino acid oxidase inhibitors. J Med Chem 2008;51:33573359.CrossRefGoogle ScholarPubMed
44.Lane, HY, Lin, CH, Green, MFet al. Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of d-amino acid oxidase inhibitor. JAMA Psychiatry 2013;70:12671275.CrossRefGoogle ScholarPubMed
45.Hashimoto, K, Engberg, G, Shimizu, E, Nordin, C, Lindstrom, LH, Iyo, M. Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry 2005;5:6.CrossRefGoogle ScholarPubMed
46.Hashimoto, K. Abnormalities of the glutamine-glutamate-GABA cycle in the schizophrenia brain. Schizophr Res 2014;156:281282.CrossRefGoogle ScholarPubMed
47.Zhang, L, Shirayama, Y, Iyo, M, Hashimoto, K. Minocycline attenuates hyperlocomotion and prepulse inhibition deficits in mice after administration of the NMDA receptor antagonist dizocilpine. Neuropsychopharmacology 2007;32:20042010.CrossRefGoogle ScholarPubMed
48.Hashimoto, K, Fujita, Y, Horio, Met al. Co-administration of a d-amino acid oxidase inhibitor potentiates the efficacy of d-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry 2009;65:11031106.CrossRefGoogle ScholarPubMed
49.Horio, M, Fujita, Y, Ishima, Tet al. Effects of d-amino acid oxidase inhibitor on the extracellular d-alanine levels and the efficacy of d-alanine on dizocilpine-induced prepulse inhibition deficits in mice. Open Clin Chem J 2009;2:1621.CrossRefGoogle Scholar
50.Ren, Q, Zhang, JC, Fujita, Y, Ma, M, Wu, J, Hashimoto, K. Effects of TrkB agonist 7,8-dihydroxyflavone on sensory gating deficits in mice after administration of methamphetamine. Pharmacol Biochem Behav 2013;106:124127.CrossRefGoogle ScholarPubMed
51.Fukushima, T, Kawai, J, Imai, K, Toyo’oka, T. Simultaneous determination of d- and l-serine in rat brain microdialysis sample using a column-switching HPLC with fluorimetric detection. Biomed Chromatogr 2004;18:813819.CrossRefGoogle ScholarPubMed
52.Aoyama, C, Santa, T, Tsunoda, M, Fukushima, T, Kitada, C, Imai, K. A fully automated amino acid analyzer using NBD-F as a fluorescent derivatization reagent. Biomed Chromatogr 2004;18:630636.CrossRefGoogle ScholarPubMed
53.Horio, M, Kohno, M, Fujita, Yet al. Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 2011;59:853859.CrossRefGoogle ScholarPubMed
54.Smith, SM, Uslaner, JM, Hutson, PH. The therapeutic potential of d-Amino acid oxidase (DAAO) inhibitors. Open Med Chem J 2010;4:39.CrossRefGoogle ScholarPubMed
55.Sacchi, S, Rosini, E, Pollegioni, L, Molla, G. d-Amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des 2013;19:24992511.CrossRefGoogle ScholarPubMed
56.Hashimoto, K. Comments on ‘The effect of risperidone on d-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia’. J Psychopharmacol 2010;24:11331134.CrossRefGoogle ScholarPubMed
57.Jana, A, Modi, KK, Roy, A, Anderson, JA, van Breemen, RB, Pahan, K. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders. J Neuroimmune Pharmacol 2013;8:739755.CrossRefGoogle ScholarPubMed
58.Ren, Q, Zhang, JC, Ma, M, Fujita, Y, Wu, J, Hashimoto, K. 7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine. Psychopharmacology (Berl) 2014;231:159166.CrossRefGoogle ScholarPubMed
59.Hashimoto, K. Microglial activation in schizophrenia and minocycline treatment. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:17581759. author reply 1760.CrossRefGoogle ScholarPubMed
60.Matsuzawa, D, Hashimoto, K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid Redox Signal 2011;15:20572065.CrossRefGoogle ScholarPubMed
61.Yao, JK, Keshavan, MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011;15:20112035.CrossRefGoogle ScholarPubMed
62.Kirkpatrick, B, Miller, BJ. Inflammation and schizophrenia. Schizophr Bull 2013;39:11741179.CrossRefGoogle ScholarPubMed
63.Steullet, P, Cabungcal, JH, Monin, Aet al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res 2014, doi:10.1016/j.schres.2014.06.021.Google Scholar
64.Brahmachari, S, Jana, A, Pahan, K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J Immunol 2009;183:59175927.CrossRefGoogle Scholar
65.Khasnavis, S, Pahan, K. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons. J Neuroimmune Pharmacol 2012;7:424435.CrossRefGoogle Scholar
66.Zhang, L, Kitaichi, K, Fujimoto, Yet al. Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:13811393.CrossRefGoogle ScholarPubMed
67.Chen, H, Wu, J, Zhang, Jet al. Protective effects of the antioxidant sulforaphane on behavioral changes and neurotoxicity in mice after the administration of methamphetamine. Psychopharmacology (Berl) 2012;222:3745.CrossRefGoogle ScholarPubMed