Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:24:40.814Z Has data issue: false hasContentIssue false

Cytokines in de obsessief compulsieve stoornis en in anorexia nervosa: een overzicht

Published online by Cambridge University Press:  18 September 2015

D. van West
Affiliation:
Clinical Research Center for Mental Health (CRCMH), Antwerp, Belgium
M. Maes*
Affiliation:
Istituto Fatebenefratelli, Brescia, Italy; Department of Psychiatry, Vanderbilt University, Nashville, USA, Department of Psychiatry and Neuropsychology, University of Maastricht, Maastricht, the Netherlands.
*
Professor and Chairman, Department of Psychiatry and Neuropsychology, University Hospital of Maastricht, Postbus 5800, 6202 AZ Maastricht, The Netherlands

Summary

The alterations in the inflammatory response system (IRS) appear to be quite different between OCD and anorexia nervosa and are also different from the changes observed in major depression. In anorexia nervosa, there is some evidence for increased production of monocytic cytokines, i.e. tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6), and decreased production of Th-1 like cytokines, i.e. IL-2 and IFNγ. In the same patients there are also signs of immunosuppression, e.g. lowered numbers of CD4 and CD8 T cells and increased production of transforming growth factor-beta (TGFβ). The increased production of monocytic cytokines may be the consequence of the hyponutritional status of those patients. The diminished production of the Th-1 like cytokines may be the consequence of at least four different factors: 1) the deficiency in nutritional factors; 2) neuroendocrine disorders, such as increased Cortisol production; 3) the increased TGFβ production; and 4) lower serum dipeptidyl peptidase activity. In OCD no consistent or specific alterations in the IRS are observed. There is no evidence that IRS activation may play a role in the pathophysiology of OCD and anorexia nervosa.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Maes, M. Acute phase protein alterations in major depression: A review. Rev Neurosci 1993; 4: 407–16.CrossRefGoogle ScholarPubMed
2.Maes, M. The immune pathophysiology of major depression. In: Honig, A, van Praag, HM (ed) Depression: Neurobiological, Psychopathological and Therapeutic Advances. London, John Wiley, 1997, pp 197215.Google Scholar
3.Maes, M, Smith, R. Immune activation and major depression: a hypothesis. Psychiatry, Curr Med Lit Psychiatry 1997; 9: 36.Google Scholar
4.Maes, M, Song, C, Lin, A, et al.The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Thl-like response in stress-induced anxiety. Cytokine 1998; 10: 313–8.CrossRefGoogle Scholar
5.Maes, M, Song, C, Lin, A, et al.Immune and clinical correlates of psychological stress-induced production of interferon-gamma and IL-10 in humans. In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA (eds). Cytokines, Stress and Immunity. Boca Raton, Raven Press, 1998, pp 3950.Google Scholar
6.Deinzer, R, Forster, P, Fuck, L, Herforth, A, Stiller-Winkler, R, Idei, H. Increase of crevicular interleukin lbeta under academic stress at experimental gingivitis sites and at sites of perfect oral hygiene. J Clin Periodontol 1999; 26: 18.CrossRefGoogle Scholar
7.Spivak, B, Shohat, B, Mester, R, et al.Elevated levels of serum interleukin-1 in combat-related posttraumatic stress disorder. Biol Psychiatry 1997; 42: 345–8.CrossRefGoogle ScholarPubMed
8.Maes, M, Lin, A, Delmeire, L, et al.Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in post-traumatic stress disorder following accidental man-made traumatic events. Biol Psychiatry 1999; 45: 833–9.CrossRefGoogle ScholarPubMed
9.Do Carmo, I, Palma-Carlos, ML, Melo, A, et al.Characterization of leukocytes, lymphocytes and lymphocyte subsets in eating disorders. Allergie Immunol 1997; 29: 261–8.Google ScholarPubMed
10.Fink, S, Eckert, E, Mitchell, J, Crosby, R, Pomeroy, C. T-lymphocyte subsets in patients with abnormal body weight: longitudinal studies in anorexia nervosa and obesity. Int J Eating Disord 1996; 20: 295305.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
11.Marcos, A, Varela, P, Toro, O, Nova, E, Lopez-Vidriero, I, Morande, G. Evaluation of nutritional status by immunological assessment in bulimia nervosa: influence of body mass index and vomiting episodes. Am J Clin Nutr 1997; 66: 491S497S.CrossRefGoogle ScholarPubMed
12.Mustafa, A, Ward, A, Treasure, J, Peakman, M. T lymphocyte subpopulations in anorexia nervosa and refeeding. Clin Immunol Immunopathol 1997; 82: 282–9.CrossRefGoogle ScholarPubMed
13.Pirke, KM, Neri, C, Krieg, JC, Fichter, MM. Anorexia and Bulimia Nervosa. Int J Eating Disorders 1992; 2: 185–9.3.0.CO;2-D>CrossRefGoogle Scholar
14.Allende, LM, Corell, A, Manzanares, J, et al.Immunodeficiency associated with anorexia nervosa is secondary and improves after refeeding. Immunol 1998; 94: 543–51.CrossRefGoogle ScholarPubMed
15.Matta, SG, Weatherbee, J, Sharp, BM. A central mechanism is involved in the secretion of ACTH in response to IL-6 in rats. Neuroendocrinol 1992; 56: 516–25.CrossRefGoogle ScholarPubMed
16.Pomeroy, C, Mitchell, JE. Medical complications and management of eating disorders. Psych Annals 1989; 19: 488–93.CrossRefGoogle Scholar
17.Sternberg, EM, Chrousos, GP, Wilder, RL, Gold, PW. The stress response and the regulation of inflammatory disease. Ann Intern Med 1992; 117: 854–66.CrossRefGoogle ScholarPubMed
18.Akira, S, Hirano, T, Taga, T, Kishimoto, T. Biology of multifunctional cytokines: IL-6 and related molecules (IL-1 and TNF?). FASEB J 1990; 4: 2860–7.CrossRefGoogle ScholarPubMed
19.Kent, S, Bret-Dibat, JL, Kelley, KW, Dantzer, R. Mechanisms of sickness-induced decreases in food-motivated behavior. Special Issue: Society for the Study of Ingestive Behavior, Second Independent Meeting. Neurosci Biobehav Rev 1996; 20: 171–5.CrossRefGoogle Scholar
20.Plata-Salaman, CR, Sonti, G, Borkoski, JP, Wilson, CD. Anorexia induced by chronic central administration of cytokines at estimated pathophysiological concentrations. Physiol Behav 1996; 60: 867–75.CrossRefGoogle ScholarPubMed
21.Shimomura, Y, Inukai, T, Kuwabara, S, Shimizu, H. Both cyclo-oxygenase and lipoxygenase inhibitor partially restore the anorexia by interleukin-lbeta. Life Sci 1992; 51: 1419–26.CrossRefGoogle Scholar
22.Brambilla, F, Bellodi, L, Brunetta, M, Perna, G. Plasma concentrations of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in anorexia and bulimia nervosa. Psychoneuroendocrinol 1998; 23: 439–47.CrossRefGoogle ScholarPubMed
23.Vaisman, N, Barak, Y, Hahn, T, Karov, Y, Malach, L, Barak, V. Defective in vitro granulopoiesis in patients with anorexia nervosa. Ped Res 1996; 40: 108–11.CrossRefGoogle ScholarPubMed
24.Bessler, H, Karp, L, Notti, I, et al.Cytokine production in anorexia nervosa. Clin Neuropharmacol 1993; 3: 237–43.CrossRefGoogle Scholar
25.Ray, A, Tatter, SB, Santhanam, U, Helfgott, DC, May, LT, Setigal, PB. Regulation of expression of interleukin-6. Ann NY Acad Sci 1989; 557: 353–63.CrossRefGoogle ScholarPubMed
26.Van Snick, J. Interleukin-6. An overview. Annu Rev Immunol 1990; 8: 253–78.CrossRefGoogle ScholarPubMed
27.Vassalli, P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol 1992; 10: 411–52.CrossRefGoogle ScholarPubMed
28.Grimble, RF. Cytokines: Their relevance to nutrition. Eur J Clin Nutr 1989; 43: 217–30.Google ScholarPubMed
29.Strassman, G, Fong, M, Kenncy, JS, Jacob, CO. Evidence for the involvement of interleukin-6 in experimental cancer cachexia. J Clin Invest 1992; 89: 1681–4.CrossRefGoogle Scholar
30.Pomeroy, C, Eckert, E, Hu, S, et al.Role of Interleukin-6 and Transforming Growth Factor-beta in anorexia nervosa. Biol Psychiatry 1994; 6: 836–9.CrossRefGoogle Scholar
31.Beutler, B, Cerami, A. Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 1986; 320: 584.CrossRefGoogle ScholarPubMed
32.Tracey, KJ, Lowry, SF, Cerami, A. Physiological responses to cachectin. In: Ciba Foundation Symposium. Tumor necrosis Factor and Related Cytotoxins. Chichester, Wiley, 1987, p 88.Google Scholar
33.Socher, SH, Friedman, A, Martinez, ZD. Recombinant human tumor necrosis factor induces acute reductions in food intake and body weight in mice. J Exp Med 1988; 167: 1957.CrossRefGoogle ScholarPubMed
34.Plata-Salaman, CR, Oomura, Y, Kai, Y. Tumor necrosis factor and interleukin-lbeta: suppression of food intake by direct action in the central nervous system. Brain Res 1988; 448: 106.CrossRefGoogle Scholar
35.Torti, FM, Dieckmann, B, Beutler, B, Cerami, A, Ringold, GM. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Science 1985; 229: 867.CrossRefGoogle Scholar
36.Lee, MD, Zentella, A, Pekala, PH, Cerami, A. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci USA 1987; 84: 2590.CrossRefGoogle ScholarPubMed
37.Olif, A, Defeo-Jones, D, Boyer, M, et al.Tumor secreting human TNF/cachectin induces cachexia in mice. Cell 1987; 50: 555.CrossRefGoogle Scholar
38.Tracey, KJ, Wei, H, Manogue, KR, et al.Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 1988; 167: 1211.CrossRefGoogle ScholarPubMed
39.Holden, RJ, Pakula, IS. The role of tumor necrosis factor-alpha in the pathogenesis of anorexia and bulimia nervosa, cancer cachexia and obesity. Med Hypoth 1996; 47: 423–38.CrossRefGoogle ScholarPubMed
40.Schattner, A, Steinbock, M, Tepper, R, Schonfeld, A, Vaisman, N, Hahn, T. Tumor necrosis factor production and cell mediated immunity in anorexia nervosa. Clin Exp Immunol 1990; 79: 62–6.CrossRefGoogle ScholarPubMed
41.Schattner, A, Tepper, R, Steinbock, M, Hahn, T, Schoenfeld, A. TNF, interferon-gamma and cell-mediated cytotoxicity in anorexia nervosa; effect of refeeding. J Clin Laboratory Immunol 1990; 32: 183–4.Google ScholarPubMed
42.Schattner, A, Tepper, R, Steinbock, M, Schoenfeld, A, Vaisman, N, Hahn, T. Cytokines in anorexia nervosa: nutritional or neuroim-munal changes? Harefuah 1992; 123: 245–7.Google ScholarPubMed
43.Vaisman, N, Hahn, T. Tumor necrosis factor-alpha and anorexia: Cause or effect? Metabol 1991; 40: 720–3.CrossRefGoogle ScholarPubMed
44.Vaisman, N, Schaltner, A, Hahn, T. Tumor necrosis factor production during starvation. Am J Med 1989; 87: 115.CrossRefGoogle ScholarPubMed
45.Beutler, B. The presence of cachectin/tumor necrosis factor in human disease states. Am J Med 1988; 85: 287.CrossRefGoogle ScholarPubMed
46.Donohoe, TP. Stress-induced anorexia: implications for anorexia nervosa. Life Sci 1984; 34: 203.CrossRefGoogle ScholarPubMed
47.Bernstein, IL. Neural mediation of food aversions and anorexia induced by tumor necrosis factor and tumors. Special Issue: Society for the Study of Ingestive Behavior, Second Independent Meeting. Neurosci Biobehav Rev 1996; 20: 177–81.CrossRefGoogle Scholar
48.Ruscetti, FW, Palladino, MA. Transforming growth factor-beta and the immune system. Prog Growth Factor Res 1991; 3: 159–75.CrossRefGoogle ScholarPubMed
49.Sporn, MB, Robert, AB. Transforming growth factor-beta. Multiple actions and potential clinical applications. JAMA 1989; 262: 938–41.CrossRefGoogle ScholarPubMed
50.Pomeroy, C, Mitchell, JE, Eckert, ED. Risk of infection and immune function in anorexia nervosa. Int J Eat Dis 1992; 12: 4755.3.0.CO;2-D>CrossRefGoogle Scholar
51.Monteleone, P, Maes, M, Fabrazzo, M, et al.Immunoendocrine findings in patients with eating disorders. Neuropsychobiol 1999, in press.Google Scholar
52.Polack, E, Nahmod, VE, Emeric-Sauval, E, et al.Low lymphocyte Interferon-gamma production and variable proliferative response in anorexia nervosa patients. J Clin Immunol 1993; 6: 445–51.CrossRefGoogle Scholar
53.Arzt, E, Fernandez, CS, Finocchiaro, L, Criscuolo, M, Diaz, A, Finkielman, S. Immunomodulation by indoleamines: serotonin and melatonin action on DNA and interferon-gamma synthesis by human peripheral blood mononuclear cells. J Clin Immunol 1988; 8: 513–20.CrossRefGoogle ScholarPubMed
54.Finocchiaro, L, Arzt, E, Fernandez, CS, Criscuolo, M, Finkielman, S, Nahmod, V. Serotonin and melatonin synthesis in peripheral blood mononuclear cells: Stimulation by interferon-gamma as part of an immunomodulation pathway. J Interferon Res 1988; 8: 705–9.CrossRefGoogle ScholarPubMed
55.Gonzalez, MC, Riedel, M, Rettori, V, Yu, WH, McCann, SM. Effect of recombinant human gamma-interferon on the release of anterior pituitary hormones. Prog Neuroendocrinol 1990; 3: 4954.Google Scholar
56.Holsboer, F, Stalla, GK, von Bardeleben, V, Hamman, K, Muller, H, Muller, OA. Acute adrenocortical Stimulation by recombinant gamma interferon in human controls. Life Sei 1988; 42: 15.CrossRefGoogle ScholarPubMed
57.Spoth-Schwalbe, E, Porzsolt, F, Digel, W, Born, J, Klors, B, Fehm, HL. Elevated Cortisol levels during interferon-gamma treatment. Immunopharmacol 1989; 17: 141–5.CrossRefGoogle Scholar
58.Vanbelecom, H, Carmelief, P, Heremans, H, et al.Interferon-gamma inhibits stimulated adrenocorticotrophin, prolactin and growth hormone secretion in normal rat anterior pituitary cell cultures. Endocrinology 1990; 126: 2919–26.CrossRefGoogle Scholar
59.Chiappelli, F, Gwirtsman, HE, Lowy, M, et al.Pituitary-adrenal-immune system in normal subjects and in patients with anorexia nervosa: The number of circulating helper T-lymphocytes (CD 4) expressing the homing receptor Leu8 is regulated in part by pituitary-adrenal products. Psychoneuroendocrinol 1991; 16: 423–32.CrossRefGoogle Scholar
60.Armstrong-Esther, CA, Lacey, JH, Crisp, AH, Bryant, TN. An investigation of the immune response of patients suffering from anorexia nervosa. Postgrad Med J 1978; 54: 395–9.CrossRefGoogle ScholarPubMed
61.Cason, J, Ainley, CC, Wolstencroft, RA, Norton, KR, Thompson, RP. Cell-mediated immunity in anorexia nervosa. Clin Exp Immunol 1986; 64: 370–5.Google ScholarPubMed
62.van West, D, Monteleone, P, Di Lieto, A, et al.Lowered serum dipeptidyl peptidase IV activity in patients with anorexia and bulimia nervosa. Eur Arch Psychiatry 1999, submitted.Google Scholar
63.Besedowsky, K, Del Rey, A, Sorkin, E, Da Prada, M, Keller, H. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol 1979; 48: 346–55.CrossRefGoogle Scholar
64.Besedowsky, K, Del Rey, A, Sorkin, E, Dinarello, CA. Immuno-regulatory feedback between interleukin-1 and glucorticoid hormones. Science 1986; 233: 652–4.CrossRefGoogle Scholar
65.Charney, DS, Heninger, GR, Breier, A. Noradrenergic function in panic disorder. Arch Gen Psychiatry 1984; 41: 751–63.CrossRefGoogle ScholarPubMed
66.Charney, DS, Woods, SW, Henninger, GR. Noradrenergic function in generalized anxiety disorder: Effects of yohimbine in healthy subjects and patients with generalized anxiety disorder. Psychiatron Res 1989; 27: 173–82.CrossRefGoogle ScholarPubMed
67.Redmond, DE. The possible role of locus coeruleus noradrenergic activity in anxiety-panic. Clin Neuropharmacol 1986; 9: 40–2.Google ScholarPubMed
68.Cameron, OG, Nesse, RM. Systemic hormonal and physiological abnormalities in anxiety disorders. Psychoneuroendocrinol 1988; 13: 287308.CrossRefGoogle ScholarPubMed
69.Gorman, JM, Liebowitz, MR, Fryer, AJ, Stein, JA. A neuroanatomical hypothesis for panic disorder. Am J Psychiatry 1989; 146: 148161.Google ScholarPubMed
70.Felsener, P, Hofer, D, Rinner, I. Continuous in vivo treatment with catecholamines suppresses in vitro reactivity of rat peripheral blood T-lymphocytes via alpha-mediated mechanism. J Neuroim-munol 1992; 37: 45–7.Google Scholar
71.Brambilla, F, Perna, G, Bellodi, L. Noradrenergic receptor sensitivity in obsessive-compulsive disorders: Growth hormone response to Clonidine stimulation. Biol Psychiatry 1999, in press.Google Scholar
72.Brambilla, F, Giampaolo, P, Bellodi, L, et al.Plasma interleukin-1? and tumor necrosis factor concentrations in obsessive-compulsive disorders. Biol Psychiatry 1997; 42: 976–81.CrossRefGoogle ScholarPubMed
73.Monteleone, P, Catapano, F, Fabrazzo, M, Tortorella, A, Maj, M. Decreased blood levels of tumor necrosis factor-alpha in patients with obsessive-compulsive disorder. Neuropsychobiol 1998; 37: 182–5.CrossRefGoogle ScholarPubMed
74.Lieberman, JA, Kane, JM, Sarantakos, S. Dexamethasone suppression tests in patients with obsessive-compulsive disorder. Am J Psychiatry 1985; 142: 747–51.Google ScholarPubMed
75.Cameron, OG, Kerber, K, Curtis, GC. Obsessive-compulsive disorder and the DST. Psychiatry Res 1986; 19: 329–30.CrossRefGoogle ScholarPubMed
76.Butler, LD, Layman, NK, Riedi, PE. Neuroendocrine regulation of in vivo cytokine production and effects: In vivo regulatory networks involving the neuroendocrine system, interleukin-1 and tumor necrosis factor-alpha. J Neuroimmunol 1989; 24: 143–53.CrossRefGoogle ScholarPubMed
77.Altemus, M, Pigott, T, Kalogeras, KT. Abnormalities in the regulation of vasopressin and corticotropin releasing factor secretion in obsessive-compulsive disorder. Arch Gen Psychiatry 1992; 4: 920.CrossRefGoogle Scholar
78.Altemus, M, Michelson, D, Galliven, E, Gold, PW, Murphy, DL. Reduced peripheral HPA axis activity in OCD [abstract]. Biol Psychiatry 1993; 33 (suppl 37A): 162A.Google Scholar
79.Monteleone, P, Catapano, F, Del Buono, G, Maj, M. Circadian rhythms of melatonin, Cortisol and prolactin in patients with obsessive-compulsive disorder. Acta Psychiatr Scand 1994; 89: 411–15.CrossRefGoogle ScholarPubMed
80.Bailly, D, Servant, D, Dewailly, D. Corticotropin-releasing factor stimulation test in obsessive-compulsive disorder. Biol Psychiatry 1994; 35: 143–6.CrossRefGoogle ScholarPubMed
81.Maes, M, Meitzer, HY, Bosmans, E. Psychoimmune investigation in obsessive-compulsive disorder: assays of plasma transferrin, IL-2 and IL-6 receptor, and IL-1 beta and IL-6 concentrations. Neuropsychobiol 1994; 30: 5760.CrossRefGoogle ScholarPubMed
82.Weizman, R, Laor, N, Barber, Y, et al.Cytokine production in obsessive-compulsive disorder. Biol Psychiatry 1996; 40: 908–12.CrossRefGoogle ScholarPubMed
83.Mittlemam, BB, Castellanos, FX, Jacobsen, LK, Rapoport, JL, Swedo, SE, Shearer, GM. Cerebrospinal fluid cytokines in pediatric neuropsychiatrie disease. J Immunol 1997; 159: 2994–9.CrossRefGoogle Scholar
84.Mosmann, TR, Coffman, RL. Thl, Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145.CrossRefGoogle Scholar
85.Mosmann, TR, Sad, S. The expanding universe of T cell subsets: Thl, Th2, and more. Immunol Today 1996; 17: 138.CrossRefGoogle Scholar