Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T06:26:55.826Z Has data issue: false hasContentIssue false

Virtual Paleontology

Tomographic Techniques For Studying Fossil Echinoderms

Published online by Cambridge University Press:  29 September 2021

Jennifer E. Bauer
Affiliation:
University of Michigan Museum of Paleontology
Imran A. Rahman
Affiliation:
Natural History Museum and Oxford University Museum of Natural History

Summary

Imaging and visualizing fossils in three dimensions with tomography is a powerful approach in paleontology. Here, the authors introduce select destructive and non-destructive tomographic techniques that are routinely applied to fossils and review how this work has improved our understanding of the anatomy, function, taphonomy, and phylogeny of fossil echinoderms. Building on this, this Element discusses how new imaging and computational methods have great promise for addressing long-standing paleobiological questions. Future efforts to improve the accessibility of the data underlying this work will be key for realizing the potential of this virtual world of paleontology.
Get access
Type
Element
Information
Online ISBN: 9781108881944
Publisher: Cambridge University Press
Print publication: 11 November 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I., Bartels, C., & Kammer, T. W. (2013). Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsrück Slate, Germany. Lethaia, 46(3), 416420.Google Scholar
Bauer, J. E., Sumrall, C. D., & Waters, J. A. (2015). In Zamora, S. and Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuadernos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, pp. 3336.Google Scholar
Bauer, J. E., Sumrall, C. D., & Waters, J. A. (2017). Hydrospire morphology and implications for blastoid phylogeny. Journal of Paleontology, 91(4), 847857.Google Scholar
Bauer, J. E., Waters, J. A., & Sumrall, C. D. (2019). Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata). Palaeontology 62(6), 10031013.Google Scholar
Beaver, H. H. (1967). Morphology. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1, v. 2: New York and Lawrence, Geological Society of America and University of Kansas, S392S398.Google Scholar
Bell, B. M. (1977). Respiratory schemes in the class Edrioasteroidea. Journal of Paleontology, 51(3), 619632.Google Scholar
Blainville, H. M. D. (1828). In Cuvier, F. et al., 1816–1830 vol. 50, Dictionnaire des Sciences Naturelles dans lequel on Traite Méthodiquement des Différens Êtres de la Natur, Considérés soit en Eux-mêmes, d’après l’état Actuel de nos Connoissances, soit Relativement a l’Utilité qu’en Peuvent Retirer la Médecine, l’Agriculture, le Commerce et les Arts. Suivi d’une Biographie des Plus Célèbres Naturalistes. Strasbourg and Paris: F. G. Levrault.Google Scholar
Branca, W. (1906). Die Anwendung der Röntgenstrahlen in der Paläontologie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, Verlag der Königlichen Akademie der Wissenschaften.Google Scholar
Breimer, A. (1988a). The anatomy of the spiraculate blastoids; Part I: The family Troosticrinidae. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 91(1), 113.Google Scholar
Breimer, A. (1988b). The anatomy of spiraculate blastoids; Part II: The family Diploblastidae. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 91(2), 161169.Google Scholar
Breimer, A., & MacurdaJr., D. B. (1972). The Phylogeny of Fissiculate Blastoids. Amsterdam: North-Holland Publishing Company. 390 pp.Google Scholar
Briggs, D. E., Siveter, D. J., & Siveter, D. J. (1996). Soft-bodied fossils from a Silurian volcaniclastic deposit. Nature, 382(6588), 248250.Google Scholar
Briggs, D. E. G., Siveter, D. J., Siveter, D. J., Sutton, M. D., & Rahman, I. A. (2017). An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm. Proceedings of the Royal Society B: Biological Sciences, 284(1862), 20171189. doi: https://doi.org/10.1098/rspb.2017.1189Google Scholar
Bright, J. A., Marugán-Lobón, J., Cobb, S. N., & Rayfield, E. J. (2016). The shapes of bird beaks are highly controlled by nondietary factors. Proceedings of the National Academy of Sciences, 113(19), 53525357.Google Scholar
Broadhead, T. W. (1984). Macurdablastus, a Middle Ordovician blastoid from the southern Appalachians. The University of Kansas Paleontological Contributions, 110, 19.Google Scholar
Callaway, E. (2011). Fossil data enter the web period. Nature, 472, 150.Google Scholar
Clark, E. G., Bhullar, B.-A. S., Darroch, S. A. F., & Briggs, D. E. G. (2017). Water vascular system architecture in an Ordovician ophiuroid. Biology Letters, 13(12), 20170635. doi: https://doi.org/10.1098/rsbl.2017.0635Google Scholar
Clark, E. G., Hutchinson, J. R., & Briggs, D. E. G. (2020a). Three-dimensional visualization as a tool for interpreting locomotion strategies in ophiuroids from the Devonian Hunsrück Slate. Royal Society Open Science, 7(12), 201380.Google Scholar
Clark, E. G., Hutchinson, J. R., Bishop, P. J., & Briggs, D. E. (2020b). Arm waving in stylophoran echinoderms: Three-dimensional mobility analysis illuminates cornute locomotion. Royal Society Open Science, 7(6), 200191.Google Scholar
Cole, S. R. (2017). Phylogeny and morphologic evolution of the Ordovician Camerata (class Crinoidea, phylum Echinodermata). Journal of Paleontology, 91(4), 815828.Google Scholar
Cole, S. R. (2019). Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology, 62(3), 357373.Google Scholar
Cole, S. R., Wright, D. F., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 8298.Google Scholar
Conroy, G. C., & Vannier, M. W. (1984). Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography. Science, 226(4673), 456458.CrossRefGoogle ScholarPubMed
Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, P. C. J. (2014). A virtual world of paleontology. Trends in Ecology and Evolution, 29(6), 347357.Google Scholar
David, B., Lefebvre, B., Mooi, R., & Parsley, R. L. (2000). Are homalozoans echinoderms? An answer from the extraxialaxial theory. Paleobiology, 26(4), 529555.Google Scholar
Davies, T. G., Rahman, I. A., Lautenschlager, S. et al.(2017). Open data and digital morphology. Proceedings of the Royal Society B: Biological Sciences, 284(1852), 20170194.Google Scholar
Dean, J. D. (1999). What makes an ophiuroid? A morphological study of the problematic Ordovician stelleroid Stenaster and the palaeobiology of the earliest asteroids and ophiuroids. Zoological Journal of the Linnean Society, 126(2), 225250. doi: https://doi.org/10.1111/j.1096-3642.1999.tb00154.xGoogle Scholar
de Lamarck, J. B. D. M. (1801). Système des animaux sans vertèbres ou tableau général des classes, des ordres et des genres de ces animaux. L’auteur.Google Scholar
Deline, B., Thompson, J. R., Smith, N. S. et al.(2020). Evolution and development at the origin of a phylum. 30(9), 16721679. doi: https://doi.org/10.1016/j.cub.2020.02.054Google Scholar
Dexter, T. A., Sumrall, C. D., & Mckinney, M. L. (2009). Allometric strategies for increasing respiratory surface area in the Mississippian blastoid Pentremites. Lethaia, 42(2), 127137.Google Scholar
Domínguez, P., Jacobson, A. G., & Jefferies, R. P. S. (2002). Paired gill slits in a fossil with a calcite skeleton. Nature 417(6891): 841844.Google Scholar
Donovan, S. K. & Paul, C. R. C. (1985). Coronate echinoderms from the Lower Palaeozoic of Britain. Palaeontology, 28(3), 527543.Google Scholar
d‘Orbigny, A. (1850). Podrome de paléontologie stratigraphique universelle des animaux mollusques & rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphiques (vol. 2). V. Masson.Google Scholar
d’Orbigny, A. (1840). Histoire naturelle générale et particulière des crinoïdes vivans et fossiles, comprenant la description zoologique et géologique de ces animaux. Chez l’auteur.Google Scholar
Dunlop, J. A., Wirth, S., Penney, D. et al. (2012). A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters, 8(3), 457460.Google Scholar
Dunn, C. W., Hejnol, A., Matus, D. Q. et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452(7188), 745749.Google Scholar
Dynowski, J. F., Nebelsick, J. H., Klein, A., & Roth-Nebelsick, A. (2016). Computational fluid dynamics analysis of the fossil crinoid Encrinus liliiformis (Echinodermata: Crinoidea). PLOS One, 11(5), e0156408.Google Scholar
Gil Cid, M. D., Domínguez Alonso, P., Cruz, M. C., & Escribano, M. (1996). Primera cita de un blastoideo Coronado en el Ordovícico Superior de Sierra Morena Oriental. Revista de la Sociedad geológica de España, 9(3–4), 253267.Google Scholar
Glass, A. (2006). Pyritized tube feet in a protasterid ophiuroid from the Upper Ordovician of Kentucky, USA. Acta Palaeontologica Polonica, 51(1), 171184.Google Scholar
Hamann, O. (1889). II. Die Crinoiden. 59–132. In Beiträge zur Histologie der Echinodermen, 4. G. Fischer, Jena.Google Scholar
Hambach, G. (1903). A Revision of the Blastoideae, with a Proposed New Classification, and Description of New Species. St. Louis, MO: Nixon-Jones Printing Company.Google Scholar
Haubitz, B., Prokop, M., Döhring, W., Ostrom, J. H., & Wellnhofer, P. (1988). Computed tomography of Archaeopteryx. Paleobiology, 14(2), 206213.Google Scholar
Haugh, B. N. (1975). Nervous systems of Mississippian camerate crinoids. Paleobiology, 1(3), 261272.Google Scholar
Hendricks, J. R., Stigall, A. L., & Lieberman, B. S. (2015). The Digital Atlas of Ancient Life: Delivering information on paleontology and biogeography via the web. Palaeontologia Electronica, Article 18.2.3E.Google Scholar
Huynh, T. L., Evangelista, D., & Marshall, C. R. (2015). Visualizing the fluid flow through the complex skeletonized respiratory structures of a blastoid echinoderm. Palaeontologia Electronica, 18(1), 117.Google Scholar
Hyman, L. H. (1955). The Invertebrates: Echinodermata. New York: McGraw-Hill.Google Scholar
Janies, D. A., Voight, J. R., & Daly, M. (2011). Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Systematic Biology, 60(4), 420438.Google Scholar
Jefferies, R. P. S., & Lewis, D. N. (1978). The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 282(990), 205323.Google Scholar
Kammer, T. W., & Ausich, W. I. (2007). Soft‐tissue preservation of the hind gut in a new genus of cladid crinoid from the Mississippian (Visean, Asbian) at St Andrews, Scotland. Palaeontology, 50(4), 951959.Google Scholar
Kidwell, S. M., & Baumiller, T. (1990). Experimental disintegration of regular echinoids: Roles of temperature, oxygen, and decay thresholds. Paleobiology, 16(3), 247271.Google Scholar
Kolata, D. R., Frest, T. J., & Mapes, R. H. (1991). The youngest carpoid: Occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65(5), 844855.Google Scholar
Lartillot, N., & Philippe, H. (2008). Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1496), 14631472.Google Scholar
Lautenschlager, S. (2015). Estimating cranial musculoskeletal constraints in theropod dinosaurs. Royal Society Open Science, 2(11), 150495.CrossRefGoogle ScholarPubMed
Lefebvre, B., Guensburg, T. E., Martin, E. L. et al. (2019). Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios, 52, 2736. https://www.sciencedirect.com/science/article/pii/S0016699518301219Google Scholar
Lewis, D. (2019). The fight for control over virtual fossils. Nature, 567(7746), 2024.Google Scholar
Lewis, R. (1980). Taphonomy. Studies in Geology, Notes for a Short Course, 3, 2739.Google Scholar
Lin, J. P., Zhao, Y. L., Rahman, I. A., Xiao, S., & Wang, Y. (2010). Bioturbation in Burgess Shale-type Lagerstätten – Case study of trace fossil–body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1–2), 245256.Google Scholar
Mallatt, J., & Winchell, C. J. (2007). Ribosomal RNA genes and deuterostome phylogeny revisited. More cyclostomes, elasmobranchs, reptiles, and a brittle star. Molecular Phylogenetics and Evolution, 43(1–3), 10051022.Google Scholar
Maróti, B., Polonkai, B., Szilágyi, V. et al. (2020). Joint application of structured-light optical scanning, neutron tomography and position-sensitive prompt gamma activation analysis for the non-destructive structural and compositional characterization of fossil echinoids. NDT & E International, 115, 102295.Google Scholar
Miller, A. K., Kerr, A. M., Paulay, G. et al. (2017). Molecular phylogeny of extant Holothuroidea (Echinodermata). Molecular Phylogenetics and Evolution, 111, 110131.Google Scholar
Miller, S. A. (1889). North American Geology and Palaeontology for the Use of Amateurs, Students, and Scientists. Cincinnati, OH: Western Methodist Book Concern.Google Scholar
Miller, S. A., & Dyer, C. B. (1878). Contributions to palaeontology. Journal of the Cincinnati Society of Natural History, 1, 2439Google Scholar
Mongiardino Koch, N., & Thompson, J. R. (2020). A total-evidence dated phylogeny of echinoidea combining phylogenomic and paleontological data. Systematic Biology. doi: https://doi.org/10.1093/sysbio/syaa069Google Scholar
Moore, R. C., Lalicker, C. G., & Fischer, A. G. (1952). Invertebrate Fossils. New York: McGraw-Hill Book Company.Google Scholar
Nadhira, A., Sutton, M. D., Botting, J. P. et al. (2019). Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: Implications for early sponge evolution. Royal Society Open Science, 6(7), p.190911. doi: https://doi.org/10.1098/rsos.190911.Google Scholar
Nakano, H., Hibino, T., Hara, Y., Oji, T., & Amemiya, S. (2004). Regrowth of the stalk of the sea lily, Metacrinus rotundus (Echinodermata: Crinoidea). Journal of Experimental Zoology Part A: Comparative Experimental Biology, 301(6), 464471.Google Scholar
Nichols, D. (1972). The water-vascular system in living and fossil echinoderms. Palaeontology, 15(4), 519538.Google Scholar
O’Hara, T. D., Hugall, A. F., Thuy, B., Stöhr, S., & Martynov, A. V. (2017). Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 107, 415430.Google Scholar
Orr, P. J., Briggs, D. E., Siveter, D. J., & Siveter, D. J. (2000). Three‐dimensional preservation of a non‐biomineralized arthropod in concretions in Silurian volcaniclastic rocks from Herefordshire, England. Journal of the Geological Society, 157(1), 173186.Google Scholar
Paul, C. R. C. (1967). New Ordovician Bothriocidaridae from Girvan and a reinterpretation of Bothriocidaris Eichwald. Palaeontology, 11(4), 697730.Google Scholar
Paul, C. R. C. (1968). Morphology and function of dichoporite pore-structures in cystoids. Palaeontology, 11(5), 697730.Google Scholar
Paul, C. R. C., & Smith, A. B. (1984). The early radiation and phylogeny of echinoderms. Biological Reviews, 59(4), 443481.Google Scholar
Perseke, M., Bernhard, D., Fritzsch, G. et al. (2010). Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata. Molecular Phylogenetics and Evolution, 56(1), 201211.Google Scholar
Pisani, D., Feuda, R., Peterson, K. J., & Smith, A. B. (2012). Resolving phylogenetic signal from noise when divergence is rapid: A new look at the old problem of echinoderm class relationships. Molecular Phylogenetics and Evolution, 62(1), 2734. doi: https://doi.org/10.1016/j.ympev.2011.08.028.CrossRefGoogle Scholar
Rahman, I. A. 2020. Computational fluid dynamics and its application in echinoderm paleobiology. Elements of Paleontology. Cambridge University Press. doi: https://doi.org/10.1017/9781108893473Google Scholar
Rahman, I. A., & Clausen, S. (2009). Re‐evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata). Journal of Systematic Palaeontology, 7(4), 413426.CrossRefGoogle Scholar
Rahman, I. A., & Smith, S. Y. (2014). Virtual paleontology: Computer-aided analysis of fossil form and function. Journal of Paleontology, 88(4), 633635.Google Scholar
Rahman, I. A., & Zamora, S. (2009). The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157(2), 420432.Google Scholar
Rahman, I. A., Zamora, S., & Geyer, G. (2010). The oldest stylophoran echinoderm: A new Ceratocystis from the Middle Cambrian of Germany. Paläontologische Zeitschrift, 84(2), 227237.Google Scholar
Rahman, I. A., Belaústegui, Z., Zamora, S., Nebelsick, J. H., Domènech, R., & Martinell, J. (2015). Miocene Clypeaster from Valencia (E Spain): Insights into the taphonomy and ichnology of bioeroded echinoids using X-ray micro-tomography. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 168179.CrossRefGoogle Scholar
Rahman, I. A., Stewart, S. E., & Zamora, S. (2015). The youngest ctenocystoids from the Upper Ordovician of the United Kingdom and the evolution of the bilateral body plan in echinoderms. Acta Palaeontologica Polonica, 60(1), 3948.Google Scholar
Rahman, I. A., Thompson, J. R., Briggs, D. E. et al. (2019). A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan. Proceedings of the Royal Society B, 286(1900), 20182792.Google Scholar
Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35, 541576.Google Scholar
Reich, M., Sprinkle, J., Lefebvre, B. et al. (2017). The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography. Journal of Paleontology, 91(4), 735754.Google Scholar
Reid, M., Taylor, W. L., Brett, C. E., Hunter, A. W., & Bordy, E. M. (2019). Taphonomy and paleoecology of an ophiuroid-stylophoran obrution deposit from the Lower Devonian Bokkeveld Group, South Africa. Palaios, 34(4), 212228.Google Scholar
Robison, R. A., & Sprinkle, J. (1969). Ctenocystoidea: new class of primitive echinoderms. Science, 166(3912), 15121514.Google Scholar
Rowe, R., McBride, E. F., Sereno, P. C. et al. (2001). Dinosaur with a heart of stone. Science, 291(5505), 783. doi: https://doi.org/10.1126/science.291.5505.783aGoogle Scholar
Salter, J. W. (1857). On some new Palaeozoic star-fishes. Annals and Magazine of Natural History, 20(119), 321334.Google Scholar
Saulsbury, J., & Zamora, S. (2020). The nervous and circulatory systems of a Cretaceous crinoid: preservation, palaeobiology and evolutionary significance. Palaeontology, 63(2), 243253. doi: https://doi.org/10.1111/pala.12452Google Scholar
Schmidtling, R. C. II, & Marshall, C. R. (2010). Three dimensional structure and fluid flow through the hydrospires of the blastoid echinoderm, Pentremites rusticus. Journal of Paleontology, 84(1), 109117.Google Scholar
Sheffield, S. L. & Sumrall, C. D. (2019a). The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology, 93(4), 740752. doi: https://doi.org/10.1017/jpa.2019.2Google Scholar
Sheffield, S. L., & Sumrall, C.D. (2019b). A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa: Echinodermata) and its bearing on the evolution of early crinoids. Palaeontology, 62(1), 163173. doi: https://doi.org/10.1111/pala.12396.Google Scholar
Sheffield, S. L., Ausich, W. I., & Sumrall, C. D. (2018). Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: Implications for evolutionary and biogeographic patterns. Canadian Journal of Earth Sciences, 55(1), 17.Google Scholar
Sheffield, S. L., Limbeck, M. R., Bauer, J. E., Hill, S. A., & Nohejlová, M. (forthcoming). A review of blastozoan echinoderm respiratory structures. Elements of Paleontology.Google Scholar
Siveter, D. J., Briggs, D. E., Siveter, D. J., & Sutton, M. D. (2020). The Herefordshire Lagerstätte: Fleshing out Silurian marine life. Journal of the Geological Society, 177(1), 113. doi: https://doi.org/10.1144/jgs2019-110.Google Scholar
Smith, A. B. (1985). Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology 28(4), 715756.Google Scholar
Smith, A. B. (1990). Biomineralization in echinoderms. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 1, 413442.Google Scholar
Smith, A. B. (2005). The pre-radial history of echinoderms. Geological Journal, 40(3), 255280.Google Scholar
Smith, A. B. (2008). Deuterostomes in a twist: The origins of a radical new body plan. Evolution & Development, 10(4), 493503.Google Scholar
Smith, A. B., & Zamora, S. (2013). Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20131197.Google Scholar
Sollas, W. J. (1904) A method for the investigation of fossils by serial sections. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 196, 257263.Google Scholar
Sprinkle, J. (1973).Morphology and Evolution of Blastozoan Echinoderms. Museum of Comparative Zoology, Harvard University.CrossRefGoogle Scholar
Sprinkle, J., & Wilbur, B. C. (2005). Deconstructing helicoplacoids: Reinterpreting the most enigmatic Cambrian echinoderm. Geological Journal, 40(3), 281293.CrossRefGoogle Scholar
Sprinkle, J., Parsley, R. L., Zhao, Y. & Peng, J. (2011). Revision of lyracystid eocrinoids from the Middle Cambrian of South China and Western Laurentia. Journal of Paleontology, 85(2), 250255. doi: https://doi.org/10.1666/10-072.1CrossRefGoogle Scholar
Stensiö, E. A. (1927). The Downtonian and Devonian vertebrates of Spitsbergen. Part I. Family Cephalaspidae. Skrifter Svalbard Nordishavet 12, 1391.Google Scholar
Stock, S. R., & Veis, A. (2003). Preliminary microfocus X-ray computed tomography survey of echinoid fossil microstructure. Geological Society, London, Special Publications, 215(1), 225235.Google Scholar
Sumrall, C. D., & Gahn, F. J. (2006). Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada. Canadian Journal of Earth Sciences, 43(4), 497507.Google Scholar
Sumrall, C. D., & Waters, J. A. (2012). Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: Steps toward echinoderm phylogenetic reconstruction in derived blastozoa. Journal of Paleontology, 86(6), 956972.Google Scholar
Sumrall, C. D., & Wray, G. A. (2007). Ontogeny in the fossil record: Diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33(1), 149163.Google Scholar
Sutton, M. D., Briggs, D. E., Siveter, D. J., & Siveter, D. J. (2001). Methodologies for the visualization and reconstruction of three-dimensional fossils from the Silurian Herefordshire Lagerstätte. Palaeontologia Electronica, 4(1), 117.Google Scholar
Sutton, M. D., Briggs, D. E. G., Siveter, D. J., Siveter, D. J., & Gladwell, D. J. (2005). A starfish with three-dimensionally preserved soft parts from the Silurian of England. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 10011006.Google Scholar
Sutton, M. D., Rahman, I. A., & Garwood, R. J. (2014). Techniques for virtual palaeontology. John Wiley & Sons.Google Scholar
Sutton, M. D., Rahman, I. A., & Garwood, R. (2017). Virtual Paleontology – an overview. The Paleontological Society Papers, 22, 120.Google Scholar
Tate, J. R., & Cann, C. E. (1982). High‐resolution computed tomography for the comparative study of fossil and extant bone. American Journal of Physical Anthropology, 58(1), 6773.Google Scholar
Thuy, B., & Stöhr, S. (2016). A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PloS One, 11(5)126.Google Scholar
Waters, J. A., Sumrall, C. D., White, L. E., & Nguyen, B. K. (2015). Advancing phylogenetic inference in the Blastoidea (Echinodermata). Virtual 3D reconstructions of the internal anatomy. In Zamora, S. and Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuadernos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, 193197.Google Scholar
Waters, J. A., White, L. E., Sumrall, C. D., & Nguyen, B. K. (2017). A new model of respiration in blastoid (Echinodermata) hydrospires based on CFD simulations of virtual 3D models. Journal of Paleontology, 91(4), p. 662671, doi: https://doi.org/10.1017/jpa.2017.1Google Scholar
Wright, D. F., Ausich, W. I., Cole, S. R., Peter, M. E., & Rhenberg, E. C. (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91(4), 829846.Google Scholar
Zamora, S., & Rahman, I. A. (2014). Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology, 57(6), 11051119. doi: https://doi.org/10.1111/pala.12138CrossRefGoogle Scholar
Zamora, S., & Smith, A. B. (2012). Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society B: Biological Sciences, 279(1727), 293298.Google Scholar
Zamora, S., Rahman, I. A., & Smith, A. B. (2012). Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution. PLoS ONE, 7(6): e38296. doi: https://doi.org/10.1371/journal.pone.0038296CrossRefGoogle ScholarPubMed
Zamora, S., Rahman, I. A., & Ausich, W. I. (2015). Palaeogeographic implications of a new iocrinid crinoid (Disparida) from the Ordovician (Darriwillian) of Morocco. PeerJ, 3, e1450.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Virtual Paleontology
  • Jennifer E. Bauer, University of Michigan Museum of Paleontology, Imran A. Rahman, Natural History Museum and Oxford University Museum of Natural History
  • Online ISBN: 9781108881944
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Virtual Paleontology
  • Jennifer E. Bauer, University of Michigan Museum of Paleontology, Imran A. Rahman, Natural History Museum and Oxford University Museum of Natural History
  • Online ISBN: 9781108881944
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Virtual Paleontology
  • Jennifer E. Bauer, University of Michigan Museum of Paleontology, Imran A. Rahman, Natural History Museum and Oxford University Museum of Natural History
  • Online ISBN: 9781108881944
Available formats
×