Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T18:40:06.354Z Has data issue: false hasContentIssue false

Sr Isotopes in Seawater

Stratigraphy, Paleo-Tectonics, Paleoclimate, and Paleoceanography

Published online by Cambridge University Press:  07 March 2022

B. Lynn Ingram
Affiliation:
University of California, Berkeley
Donald J. DePaolo
Affiliation:
University of California, Berkeley

Summary

Studies of Sr isotopic composition of thousands of samples of marine sediments and fossils have yielded a curve of 87Sr/86Sr versus age for seawater Sr that extends back to 1 billion years. The ratio has fluctuated with large amplitude during this time period, and because the ratio is always uniform in the oceans globally at any one time, it is useful as a stratigraphic correlation and age-dating tool. The ratio also appears to reflect major tectonic and climatic events in Earth history and hence provides clues as to the causes, timing, and consequences of those events. The seawater 87Sr/86Sr ratio is generally high during periods marked by continent-continent collisions, and lower when continental topography is subdued, and seafloor generation rates are high. There is evidence that major shifts in the seawater ratio can be ascribed to specific orogenic events and correlate with large shifts in global climate.
Get access
Type
Element
Information
Online ISBN: 9781108991674
Publisher: Cambridge University Press
Print publication: 31 March 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegre, C. J., Louvat, P., Gaillardet, J. et al., 2010, The fundamental role of island arc weathering in the Sr isotope budget. Earth Planet. Sci. Lett., vol. 292, 5156 (Important summary of riverine Sr inputs to the oceans and arguing that weathering on oceanic islands constitutes a major fraction of the Sr derived from “ocean floor” type sources with low 87Sr/86Sr.)Google Scholar
Arthur, M. A., and Schlanger, S. O., 1979, Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields. AAPG Bull., vol. 63, 870885.Google Scholar
Beck, A. J., Charette, M. A., Cochran, J. K., Gonneea, M. E., and Peiucker-Ehrenbrink, B., 2013, Dissolved strontium in the subterranean estuary – Implications for the marine strontium isotope budget. Geochim. Cosmochim. Acta, vol. 117, 3352.Google Scholar
Broecker, W. S. and Peng, T. H. (1982) Tracers in the Sea. Eldigio Press, New York, 690pp.Google Scholar
Capo, R. C., and DePaolo, D. J., 1990, Seawater strontium isotopic variations: 2.5 Ma to the present. Science, vol. 249, 5155.CrossRefGoogle Scholar
Capo, R. C., and DePaolo, D. J., 1992, Homogeneity of Sr isotopes in the ocean. EOS, Trans. Am. Geophys. Union 73, 272.Google Scholar
Chakrabarti, R., Mondal, S., Shankar Achary, S., Lekha, J. S., and Sengupta, D., 2018, Submarine groundwater discharge derived strontium from the Bengal Basin traced in Bay of Bengal water samples. Nat. Sci. Rep., vol. 8, 4383. http://doi.org/10.1038/s41598-018-22299-5Google Scholar
Chen, C.-H, DePaolo, D. J., and Lan, C.-Y., 1996, Rb-Sr microchrons in the Manaslu granite: Implications for Himalayan thermochronology. Earth Planet. Sci. Lett., vol. 143, 125135.Google Scholar
DeConto, R. M., and Pollard, D., 2003, Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, vol. 421, 245249.Google Scholar
DePaolo, D. J. and Ingram, B. L., 1985, High resolution stratigraphy with Strontium isotopes: Science vol. 227, 938941.Google Scholar
DePaolo, D. J., and Finger, K. L., 1991, High resolution strontium isotope stratigraphy and biostratigraphy of the Miocene Monterey Formation, central California.Geol. Soc. Am. Bull., vol. 103, 112124.Google Scholar
DePaolo, D. J., Harrison, T. M., Wielicki, M. et al., 2019, Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet. Gondwana Res. Vol. 73, 123135. http://doi.org/10.1016/j.gr.2019.03.011Google Scholar
Engebretson, D. C., Kelley, K. P., Cashman, H. J., and Richards, M. A., 1992, 180 million years of subduction. Geol. Soc. Am. Today, vol. 2, 9395.Google Scholar
Fantle, M. S., and DePaolo, D. J., 2006, Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochim. Cosmochim. Acta, vol. 70, 38833904.CrossRefGoogle Scholar
Goldstein, S. J., and Jacobsen, J., 1987, The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol., vol. 66, 245272.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (eds), 2020, The Geologic Time Scale. Elsevier.Google Scholar
Halevy, I., and Bachan, A., 2017, The geologic history of seawater pH. Science, vol. 355, 10691071.CrossRefGoogle ScholarPubMed
Hess, J., Bender, M. L., and Schilling, J.-G., 1986, Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, vol. 231, 979984.Google Scholar
Huang, K. F., You, C. F., Chung, C. H., and Lin, I. T., 2011, Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: A novel tool for tracing water masses and submarine groundwater discharge. Geochem. Geophys. Geosyst., vol. 12, 5. http://doi.org/10.1029/2010GC003372Google Scholar
Ingram, B. L., 1995, High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth. Earth Planet. Sci. Lett., vol. 134, 545555.CrossRefGoogle Scholar
Ingram, B. L., and DePaolo, D. J., 1993, A 4,500-year strontium-isotope record of paleosalinity and freshwater inflow in San Francisco Bay, California. Earth Planet. Sci. Lett., vol. 119, 103119.Google Scholar
Ingram, B. L., Hein, J. R., and Farmer, G. L., 1990, Age determinations and growth rates of Pacific ferromanganese deposits using Sr isotopes. Geochim. Cosmochim. Acta, vol. 54, 17091721.Google Scholar
Ingram, B. L., and Sloan, D., 1992, Strontium isotopic composition in estuarine sediments as paleosalinity and paleoclimate indicator. Science, vol. 255, 6872.Google Scholar
Ingram, B. L., Coccioni, R., Montanari, A. and Richter, F. M., 1994, Strontium isotopic composition of mid-Cretaceous seawater, Science, vol. 264, 546550.Google Scholar
Jacobsen, S. B., and Kaufman, A. J., 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol., vol. 161, 3757.Google Scholar
Jenkyns, H. C., 2010, Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst., vol. 11, Q03004. http://doi.org/10.1029/2009GC002788CrossRefGoogle Scholar
Jones, C. E. and Jenkyns, H. C., 2001, Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci., vol. 301, 112149.Google Scholar
Korte, C., Kozur, H. W., Bruckschen, P., and Veizer, J., 2003, Strontium isotope evolution of Late Permian and Triassic seawater. Geochim. Cosmochim. Acta, vol. 67, 4762. http://doi.org/10.1016 /S0016-7037(02)01035–9CrossRefGoogle Scholar
Kump, L. R., 2008, The role of seafloor hydrothermal systems in the evolution of seawater composition during the Phanerozoic. In Lowell, R. P., Seewald, J. S., Metaxas, A., and Perfit, M. (eds), Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers, Geophys. Monogr. Ser., vol. 178. American Geophysical Union, pp. 275283.Google Scholar
Kuznetsov, A. B., Semikhatov, M. A., and Gorokhov, I. M., 2012, The Sr isotope composition of the world ocean, marginal and inland seas: Implications for Sr isotope stratigraphy. Stratigr. Geol. Correl., vol. 20, 501515. © Pleiades Publishing, Ltd., 2012 (Extensive data set showing that modern carbonate shells from multiple oceans are uniform in 87Sr/86Sr to better than ±0.000005.)CrossRefGoogle Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A., 2003, A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet. Sci. Lett., vol. 208, 6984.Google Scholar
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V., 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, vol. 294, 10861088. http://doi.org/10.1126/science.1064280Google Scholar
McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001, Strontium isotope stratigraphy: LOWESS version 3. Best-fit line to the marine Sr isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J. Geol., vol. 109, 155169.CrossRefGoogle Scholar
McArthur, J. M., Howarth, R. J., and Shields, G. A., 2012, Strontium isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds), The Geologic Time Scale 2012. Elsevier, pp. 127–144 (Comprehensive Phanerozoic seawater Sr curve showing selected data that define the curve. Update in 2020 listed in references.)CrossRefGoogle Scholar
McArthur, J. M., Howarth, R. J., Shields, G. A., and Zhou, Y., 2020, Strontium isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (eds), The Geologic Time Scale, vol. 1. Elsevier, pp. 211238.Google Scholar
McCauley, S., and DePaolo, D. J., 1997, marine, The 87Sr/86Sr and δ18O records, Himalayan alkalinity fluxes and δ. In Ruddiman, W. F. (ed), Tectonic Uplift and Climate Change. Plenum, pp. 427467.Google Scholar
Mokadem, F., Parkinson, I. J., Hathorne, E. C. et al., 2015, High precision radiogenic strontium isotope measurements of the modern and glacial ocean: Limits on glacial-interglacial variations in continental weathering. Earth Planet. Sci. Lett., vol. 415, 111120.CrossRefGoogle Scholar
Müller, M. N., Krabbenhoft, A., Vollstaedt, H., Brandini, F. P., and Eisennhauer, A., 2018, Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry. Geobiology, vol. 16, 297306.Google Scholar
Muller, D. W., and Mueller, P. A., 1991, Origin and age of the Mediterranean evaporates: Implications from Sr isotopes. Earth Planet. Sci. Lett., vol. 107, 112.Google Scholar
Palmer, M. R., and Edmond, J. M., 1989, The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., vol. 92, 1126.Google Scholar
Park, Y., Swanson-Hysell, N. L., MacLennan, S. A., et al., 2020, The lead-up to the Sturtian Snowball Earth: Neoproterozoic chemostratigraphy time-calibrated by the Tambien Group of Ethiopia. Geol. Soc. Am. Bull. Vol. 132, 11191149.Google Scholar
Peucker-Ehrenbrink, B., and Fiske, G. J., 2019, A continental perspective of the seawater 87Sr/86Sr record: A review. Chem. Geol., vol. 510, 140165.Google Scholar
Raymo, M. E., and Ruddiman, W. F., 1992, Tectonic forcing of late Cenozoic climate. Nature, vol. 359, 117122.Google Scholar
Raymo, M. E., Ruddiman, W. F., and Froelich, P. N., 1988, Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, vol. 16, 649653.Google Scholar
Richter, F.M. and DePaolo, D.J., 1988, Diagenesis and Sr isotopic evolution of seawater using data from DSDP 590B and 575: Earth Planet. Sci. Lett. vol. 90, 382394.Google Scholar
Saltzman, M. R., Edwards, C. T., Leslie, S. A. et al., 2014, Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Geol. Soc. Am. Bull., vol. 126, 15511568. http://doi.org/10.1130/B31038.1CrossRefGoogle Scholar
Sedlacek, A. R., Saltzman, M. R., Algeo, T. J. et al., 2014, 87Sr/86Sr stratigraphy from the early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, vol. 42, 779782.Google Scholar
Shields, G., and Veizer, J., 2002, Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst., vol. 3. http://doi.org/10.1029/2001GC000266Google Scholar
Sinnesael, M., Montanari, A., Frontalini, F. et al., 2019, Multiproxy Cretaceous-Paleogene boundary event stratigraphy: An Umbria-Marche basinwide perspective. In Koeberl, C., and Bice, D. M. (eds), 250 million years of Earth history in central Italy: Celebrating 25 years of the Geological Observatory of Coldigioco, Special Paper 542. Geological Society of America, pp.133158. http://doi.org/10.1130/2019.2542(07)Google Scholar
Song, H., Wignall, P. B., Tong, J. et al., 2015, Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet. Sci. Lett., vol. 424, 140147.Google Scholar
Steuber, T., and Veizer, J., 2002, Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, vol. 30, 11231126.Google Scholar
Swanson-Hysell, N. L., and Macdonald, F. A., 2017, Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, vol. 45, 719722. http://doi.org/10.1130/G38985.1Google Scholar
Turchyn, A. V., and DePaolo, D. J., 2019, Seawater chemistry through Phanerozoic time. Annu. Rev. Earth Planet. Sci., vol. 47, 197224.CrossRefGoogle Scholar
Veizer, J., 1989, Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci., vol. 17, 141167. http://doi.org/10.1146/annurev.ea.17.050189.001041Google Scholar
Veizer, J., and Compston, W., 1974, 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim. Cosmochim. Acta, vol. 38, 14611484.Google Scholar
Zhang, S. and DePaolo, D.J., 2020, Equilibrium calcite fluid Sr/Ca partition coefficient from marine sediment and pore fluids. Geochim. Cosmochim. Acta, vol. 289, 3346.Google Scholar
Zuza, A. V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, vol. 13, 16641712. http://doi.org/10.1130/GES01463.1Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sr Isotopes in Seawater
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Sr Isotopes in Seawater
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Sr Isotopes in Seawater
Available formats
×