Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T19:20:49.262Z Has data issue: false hasContentIssue false

Quantitative and Computational Approaches to Phonology

Published online by Cambridge University Press:  05 December 2024

Jane Chandlee
Affiliation:
Haverford College

Summary

This Element surveys the various lines of work that have applied algorithmic, formal, mathematical, statistical, and/or probabilistic methods to the study of phonology and the computational problems it solves. Topics covered include: how quantitative and/or computational methods have been used in research on both rule- and constraint-based theories of the grammar, including questions about how grammars are learned from data, how to best account for gradience as observed in acceptability judgments and the relative frequencies of different structures in the lexicon, what formal language theory, model theory, and information theory can and have contributed to the study of phonology, and what new directions in connectionist modeling are being explored. The overarching goal is to highlight how the work grounded in these various methods and theoretical orientations is distinct but also interconnected, and how central quantitative and computational approaches have become to the research in and teaching of phonology.
Get access
Type
Element
Information
Online ISBN: 9781009420402
Publisher: Cambridge University Press
Print publication: 16 January 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksënova, A. (2020). Tool-Assisted Induction of Subregular Languages and Mappings. PhD thesis. Stony Brook University.Google Scholar
Aksënova, A. & Deshmukh, S. (2018). Formal restrictions on multiple tiers. In Jarosz, G., O’Connor, B. & Pater, J., eds., Proceedings of the Society for Computation in Linguistics, Vol. 1, Article 8, pp. 6473. https://aclanthology.org/W18-0307.Google Scholar
Aksënova, A., Graf, T. & Moradi, S. (2016). Morphotactics as tier-based strictly local dependencies. In Elsner, M. & Kuebler, S., eds., Proceedings of the Fourteenth SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology. Berlin: Association for Computational Linguistics, pp. 121–30. https://aclanthology.org/W16-2019.Google Scholar
Albright, A. (2009). Feature-based generalisation as a source of gradient acceptability. Phonology, 26(1), 941.CrossRefGoogle Scholar
Albright, A. & Hayes, B. (2002). Modeling English past tense intuitions with minimal generalization. In Maxwell, M., ed., Proceedings of the ACL-02 Workshop on Morphological and Phonological Learning. New Brunswick, NJ: Association for Computational Linguistics, pp. 5869. https://aclanthology.org/W02-0607.CrossRefGoogle Scholar
Albright, A. & Hayes, B. (2003). Rules vs. analogy in English past tenses: A computational/experimental study. Cognition, 90(2), 119–61.CrossRefGoogle ScholarPubMed
Albright, A. & Hayes, B. (2014). Learning and learnability in phonology. In Goldsmith, J. A., Riggle, J. & Yu, A. C. L., eds., The Handbook of Phonological Theory, 2nd ed. Hoboken, NJ: Wiley-Blackwell, pp. 661–90.Google Scholar
Alderete, J. & Tupper, P. (2018). Connectionist approaches to generative phonology. In Bosch, A. & Hannahs, S. J., eds., The Routledge Handbook of Phonological Theory. New York: Routledge, pp. 360–90.Google Scholar
Alishahi, A., Barking, M. & Chrupała, G. (2017). Encoding of phonology in a recurrent neural model of grounded speech. In Levy, R. & Specia, L., eds., Proceedings of the Twenty-First Conference on Computational Natural Language Learning. Vancouver: Association for Computational Linguistics, pp. 368–78. https://aclanthology.org/K17-1037.Google Scholar
Anderson, S. R. (1974). The Organization of Phonology. New York: Academic Press.Google Scholar
Anttila, A. (1997a). Deriving variation from grammar: A study of Finnish genitives. In Hinskens, F., van Hout, R. & Wetzels, L., eds., Variation, Change, and Phonological Theory. Amsterdam: John Benjamins, pp. 3568.CrossRefGoogle Scholar
Anttila, A. (1997b). Variation in Finnish Phonology and Morphology. PhD thesis. Stanford University.Google Scholar
Anttila, A. (2008). Gradient phonotactics and the complexity hypothesis. Natural Language & Linguistic Theory, 26(4), 695729.CrossRefGoogle Scholar
Apoussidou, D. (2007). The Learnability of Metrical Phonology. PhD thesis. University of Amsterdam.Google Scholar
Armstrong, S. L., Gleitman, L. R. & Gleitman, H. (1983). What some concepts might not be. Cognition, 13(3), 263308.CrossRefGoogle ScholarPubMed
Bailey, T. (1995). Nonmetrical Constraints on Stress. PhD thesis. University of Minnesota.Google Scholar
Bailey, T. & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory and Language, 44(4), 568–91.CrossRefGoogle Scholar
Baković, E. (2000). Harmony, Dominance and Control. PhD thesis. Rutgers University.Google Scholar
Baković, E. & Blumenfeld, L. (2019). Rule interaction conversion operations. Loquens, 6.2, e062.CrossRefGoogle Scholar
Bale, A. & Reiss, C. (2018). Phonology: A Formal Introduction. Cambridge, MA: MIT Press.Google Scholar
Bao, Z. (1990). On the Nature of Tone. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Beesley, K. R. & Karttunen, L. (2003). Finite State Morphology. Stanford, CA: CSLI Publications.Google Scholar
Beguš, G. (2020a). Modeling unsupervised phonetic and phonological learning in generative adversarial phonology. In Ettinger, A., Jarosz, G. & Nelson, M., eds., Proceedings of the Society for Computation in Linguistics, Vol. 3, Article 15. https://scholarworks.umass.edu/scil/vol3/iss1/15.Google ScholarPubMed
Beguš, G. (2020b). Generative adversarial phonology: Modeling unsupervised phonetic and phonological learning with neural networks. Frontiers in Artificial Intelligence, Vol. 3, Article 44. https://doi.org/10.3389/frai.2020.00044.CrossRefGoogle ScholarPubMed
Belth, C. (2023). Towards a learning-based account of underlying forms: A case study in Turkish. In Hunter, T. & Prickett, B., eds., Proceedings of the Society for Computation in Linguistics, Vol. 6, Article 31. https://scholarworks.umass.edu/scil/vol6/iss1/31.Google Scholar
Bermúdez-Otero, R. (1999). Constraint Interaction in Language Change: Quantity in English and Germanic. PhD thesis. University of Manchester.Google Scholar
Bermúdez-Otero, R. (2003). The acquisition of phonological opacity. In Spenader, J., Eriksson, A. & Dahl, O., eds., Proceedings of the Stockholm Workshop on Variation within Optimality Theory. Stockholm: Department of Linguistics, Stockholm University Press, pp. 2536.Google Scholar
Beros, A. A. & de la Higuera, C. (2016). A canonical semi-deterministic transducer. Fundamenta Informaticae, 146(4), 431–59.CrossRefGoogle Scholar
Berstel, J. (1982). Fonctions rationnelles et addition. Actes de l’Ecole de Printemps de Théorie des Langages. Paris: Laboratoire d’Informatique de Paris, pp. 177–83.Google Scholar
Bird, S. (1995). Computational Phonology: A Constraint-Based Approach. Cambridge: Cambridge University Press.Google Scholar
Bird, S., Coleman, J. S., Pierrehumbert, J. B. & Scobbie, J. M. (1992). Declarative phonology. In Crochetière, A., Boulanger, J.-C. & Ouellon, C., eds., Proceedings of the Fifteenth International Conference of Linguists. Quebec: Presses de l’Université Laval.Google Scholar
Bird, S. & Ellison, T. M. (1994). One-level phonology: Autosegmental representations and rules as finite automata. Computational Linguistics, 20(1), 5590. https://aclanthology.org/J94-1003.Google Scholar
Blaho, S. (2008). The Syntax of Phonology: A Radically Substance-Free Approach. PhD thesis. University of Tromso.Google Scholar
Boersma, P. (1997). How we learn variation, optionality, and probability. Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam, 21, 4358.Google Scholar
Boersma, P. (2001). Phonology–semantics interaction in OT, and its acquisition. In Kirchner, R., Wikeley, W. & Pater, J., eds., Papers in Experimental and Theoretical Linguistics, 6. Edmonton: University of Alberta Press, pp. 2435.Google Scholar
Boersma, P., Benders, T. & Seinhorst, K. (2020). Neural network models for phonology and phonetics. Journal of Language Modelling, 8(1), 103–77.CrossRefGoogle Scholar
Boersma, P. & Hayes, B. (2001). Empirical tests of the gradual learning algorithm. Linguistic Inquiry, 32(1), 4586.CrossRefGoogle Scholar
Boersma, P. & Pater, J. (2016). Convergence properties of a gradual learning algorithm for harmonic grammar. In McCarthy, J. J. & Pater, J., eds., Harmonic Grammar and Harmonic Serialism. London: Equinox, pp. 389434.Google Scholar
Breiss, C. (2020). Constraint cumulativity in phonotactics: Evidence from artificial grammar learning studies. Phonology, 37(4), 551–76.CrossRefGoogle Scholar
Breiss, C. & Albright, A. (2022). Cumulative markedness effects and (non-)linearity in phonotactics. Glossa: A Journal of General Linguistics, 7(1). https://doi.org/10.16995/glossa.5713.Google Scholar
Broe, M. (1993). Specification Theory: The Treatment of Redundancy in Generative Phonology. PhD thesis. University of Edinburgh.Google Scholar
Burness, P. (2022). Non-local Phonological Processes as Multi-tiered Strictly Local Maps. PhD thesis. University of Ottawa.Google Scholar
Burness, P. & McMullin, K. (2019). Efficient learning of output tier-based strictly 2-local functions. In de Groote, P., Drewes, F. & Penn, G., eds., Proceedings of the Sixteenth Meeting on the Mathematics of Language. Toronto: Association for Computational Linguistics, pp. 7890. https://aclanthology.org/W19-5707.Google Scholar
Burness, P., McMullin, K. & Chandlee, J. (2021). Long-distance phonological processes as tier-based strictly local functions. Glossa: A Journal of General Linguistics, 6(1), 99. https://doi.org/10.16995/glossa.5780.Google Scholar
Bybee, J. (2001). Phonology and Language Use. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bybee, J. (2007). Frequency of Use and the Organization of Language. New York: Oxford Academic.CrossRefGoogle Scholar
Calamaro, S. & Jarosz, G. (2015). Learning general phonological rules from distributional information: A computational model. Cognitive Science, 39(3), 647–66. https://doi.org/10.1111/cogs.12167.CrossRefGoogle ScholarPubMed
Carden, G. (1983). The non-finite = state-ness of the word formation component. Linguistic Inquiry, 14(3), 537–41.Google Scholar
Chandlee, J. (2014). Strictly Local Phonological Processes. PhD thesis. University of Delaware.Google Scholar
Chandlee, J. (2022). Modulating between input and output locality: A case study on phonological opacity. In Bakay, Ö., Pratley, B., Neu, E. & Deal, P., eds., Proceedings of the Fifty-Second Annual Meeting of the North East Linguistic Society, Vol. 1. Amherst, MA: Graduate Linguistics Student Association, pp. 119–38.Google Scholar
Chandlee, J., Eyraud, R. & Heinz, J. (2014). Learning strictly local subsequential functions. Transactions of the Association for Computational Linguistics, 2, 491503. https://aclanthology.org/Q14-1038.CrossRefGoogle Scholar
Chandlee, J., Eyraud, R. & Heinz, J. (2015). Output strictly local functions. In Kuhlmann, M., Kanazawa, M. & Kobele, G. M., eds., Proceedings of the Fourteenth Meeting on the Mathematics of Language. Chicago, IL: Association for Computational Linguistics, pp. 112–25. https://aclanthology.org/W15-2310.Google Scholar
Chandlee, J., Eyraud, R., Heinz, J., Jardine, A. & Rawski, J. (2019). Learning with partially ordered representations. In de Groote, P., Drewes, F. & Penn, G., eds., Proceedings of the Sixteenth Meeting on the Mathematics of Language. Toronto: Association for Computational Linguistics, pp. 91101. https://aclanthology.org/W19-5708.Google Scholar
Chandlee, J., Heinz, J. & Jardine, A. (2018). Input strictly local opaque maps. Phonology, 35(2), 171205.CrossRefGoogle Scholar
Chandlee, J. & Jardine, A. (2019). Autosegmental input strictly local functions. Transactions of the Association for Computational Linguistics, 7, 157–68. https://aclanthology.org/Q19-1010.CrossRefGoogle Scholar
Chandlee, J. & Jardine, A. (2021). Input and output locality and representation. Glossa: A Journal of General Linguistics, 6(1), 43. https://doi.org/10.5334/gjgl.1423.Google Scholar
Chandlee, J. & Jardine, A. (2022). Phonological theory and computational modelling. In Dresher, B. E. & van der Hulst, H., eds., The Oxford History of Phonology. Oxford: Oxford University Press, pp. 656–76.Google Scholar
Chandlee, J. & Lindell, S. (2016). A logical characterization of strictly local functions. Paper presented at the Fourth Workshop on Natural Language and Computer Science. New York, July 10.Google Scholar
Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–67.CrossRefGoogle Scholar
Chomsky, N. & Halle, M. (1965). Some controversial questions in phonological theory. Journal of Linguistics, 1, 97138.CrossRefGoogle Scholar
Chomsky, N. & Halle, M. (1968). Sound Pattern of English. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. & Schützenberger, M. P. (1959). The algebraic theory of context-free languages. Studies in Logic and the Foundations of Mathematics, Vol. 26. Amsterdam: Elsevier, pp. 118–61.Google Scholar
Clements, G. N. & Hume, E. V. (1995). The internal organization of speech sounds. In Goldsmith, J., ed., The Handbook of Phonological Theory. Oxford: Blackwell, pp. 245306.Google Scholar
Coetzee, A. W. (2006). Variation as accessing “non-optimal” candidates. Phonology, 23(3), 337–85.CrossRefGoogle Scholar
Coetzee, A. W. & Pater, J. (2008). Weighted constraints and gradient restrictions on place co-occurrence in Muna and Arabic. Natural Language & Linguistic Theory, 26(2), 289337.CrossRefGoogle Scholar
Coleman, J. S. (1996). The psychological reality of language-specific constraints. Paper presented at the Fourth Phonology Meeting. University of Manchester, Manchester, UK, May 1618.Google Scholar
Coleman, J. (2014). Phonology as computation. In Goldsmith, J. A., Riggle, J. & Yu, A. C. L., eds., The Handbook of Phonological Theory, 2nd ed. Hoboken, NJ: Wiley-Blackwell, pp. 596630.Google Scholar
Coleman, J. & Pierrehumbert, J. (1997). Stochastic phonological grammars and acceptability. In Coleman, J., ed., Computational Phonology: Proceedings of the Third Meeting of the ACL Special Interest Group in Computational Phonology. Madrid: Association for Computational Linguistics, pp. 4956. https://aclanthology.org/W97-1107.Google Scholar
Çöltekin, Ç. (2010). A freely available morphological analyzer for Turkish. In Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M. & Tapias, D., eds., Proceedings of the Seventh International Conference on Language Resources and Evaluation. Valletta, Malta: European Language Resources Association, pp. 820–7.Google Scholar
Culy, C. (1985). The complexity of the vocabulary of Bambara. Linguistics and Philosophy, 8(3), 345–51.CrossRefGoogle Scholar
Dai, H. (2022). Phonotactic learning in the presence of exceptions with a categorical approach. Paper presented at the Annual Meeting on Phonology. University of California, Los Angeles, October 21–23.Google Scholar
Daland, R., Hayes, B., White, J., Garellek, M., Davis, A. & Norrmann, I. (2011). Explaining sonority projection effects. Phonology, 28(2), 197234.CrossRefGoogle Scholar
de la Higuera, C. (2010). Grammatical Inference: Learning Automata and Grammars. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
de Lacy, P. (2011). Markedness and faithfulness constraints. In van Oostendorp, M., Ewen, C. J., Hume, E. & Rice, K., eds., The Blackwell Companion to Phonology. Hoboken, NJ: Wiley-Blackwell, pp. 14911512.Google Scholar
Dell, F. (1981). On the learnability of optional phonological rules. Linguistic Inquiry, 12(1), 31–7.Google Scholar
Dillon, B., Dunbar, E. & Idsardi, W. (2013). A single-stage approach to learning phonological categories: Insights from Inuktitut. Cognitive Science, 37(2), 344–77. https://doi.org/10.1111/cogs.12008.CrossRefGoogle ScholarPubMed
Doucette, A. (2017). Inherent biases of recurrent neural networks for phonological assimilation and dissimilation. In Gibson, T., Linzen, T., Sayeed, A., van Schijndel, M. & Schuler, W., eds., Proceedings of the Seventh Workshop on Cognitive Modeling and Computational Linguistics. Valencia, Spain: Association for Computational Linguistics, pp. 3540. https://aclanthology.org/W17-0705.Google Scholar
Dresher, B. E. (1999). Charting the learning path: Cues to parameter setting. Linguistic Inquiry, 30(1), 2767.CrossRefGoogle Scholar
Dresher, B. E. & Kaye, J. D. (1990). A computational learning model for metrical phonology. Cognition, 34(2), 137–95.CrossRefGoogle ScholarPubMed
Durvasula, K. & Liter, A. (2020). There is a simplicity bias when generalizing from ambiguous data. Phonology, 37(2), 177213.CrossRefGoogle Scholar
Edlefsen, M., Leeman, D., Myers, N., Smith, N., Visscher, M. & Wellcome, D. (2008). Deciding strictly local (SL) languages. In Breitenbucher, J., ed., Proceedings of the Midstates Conference for Undergraduate Research in Computer Science and Mathematics. Wooster, OH: College of Wooster, pp. 6673.Google Scholar
Eisenstat, S. (2009). Learning Underlying Forms with MaxEnt. Master’s thesis. Brown University.Google Scholar
Eisner, J. (1997). Efficient generation in primitive optimality theory. In Cohen, P. R. & Wahlster, W., eds., Proceedings of the Thirty-Fifth Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics. Madrid: Association for Computational Linguistics, pp. 313–20. https://aclanthology.org/P97-1040.Google Scholar
Eisner, J. (2000). Directional constraint evaluation in optimality theory. In Kay, M., ed., Proceedings of the Eighteenth International Conference on Computational Linguistics. Saarbrucken, Germany: Association for Computational Linguistics, pp. 257–63. https://aclanthology.org/C00-1038.Google Scholar
Ellison, T. M. (1991). The iterative learning of phonological constraints. Computational Linguistics, 20(3), 132.Google Scholar
Ellison, T. M. (1992). The Machine Learning of Phonological Structure. PhD thesis. University of Western Australia.Google Scholar
Ellison, T. M. (1994). Phonological derivation in optimality theory. In Nagao, M., ed., Proceedings of the Fifteenth International Conference on Computational Linguistics, Vol. 2. Kyoto: Association for Computational Linguistics, pp. 1007–13. https://aclanthology.org/C94-2163.Google Scholar
Elsner, M., Goldwater, S. & Eisenstein, J. (2012). Bootstrapping a unified model of lexical and phonetic acquisition. In Li, H., Lin, C.-Y., Osborne, M., Lee, G. G. & Park, J. C., eds., Proceedings of the Fiftieth Annual Meeting of the Association for Computational Linguistics, Vol. 1. Jeju Island, Korea: Association for Computational Linguistics, pp. 184–93. https://aclanthology.org/P12-1020.Google Scholar
Elsner, M., Goldwater, S., Feldman, N. & Wood, F. (2013). A joint learning model of word segmentation, lexical acquisition, and phonetic variability. In Yarowsky, D., Baldwin, T., Korhonen, A., Livescu, K. & Bethard, S., eds., Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, WA: Association for Computational Linguistics, pp. 4254. https://aclanthology.org/D13-1005.CrossRefGoogle Scholar
Enderton, H. (1972). A Mathematical Introduction to Logic. Cambridge, MA: Academic Press.Google Scholar
Engelfriet, J. & Hoogeboom, H. J. (2001). MSO definable string transductions and two-way finite-state transducers. ACM Transactions on Computational Logic, 2, 216–54.CrossRefGoogle Scholar
Filiot, E. & Reynier, P.-A. (2016). Transducers, logic and algebra for functions of finite words. ACM SIGLOG News, 3(3), 419.CrossRefGoogle Scholar
Frank, R. & Satta, G. (1998). Optimality theory and the generative capacity complexity of constraint violability. Computational Linguistics, 24(2), 277–99. https://aclanthology.org/J98-2006.Google Scholar
Frisch, S. A., Pierrehumbert, J. B. & Broe, M. B. (2004). Similarity avoidance and the OCP. Natural Language & Linguistic Theory, 22(1), 179228.CrossRefGoogle Scholar
Futrell, R., Albright, A., Graff, P. & O’Donnell, T. J. (2017). A generative model of phonotactics. Transactions of the Association for Computational Linguistics, 5, 7386. https://aclanthology.org/Q17-1006.CrossRefGoogle Scholar
Gainor, B., Lai, R. & Heinz, J. (2012). Computational characterizations of vowel harmony patterns and pathologies. In Choi, J., Hogue, E. A., Punske, J., Tat, D., Schertz, J. & Trueman, A., eds., Proceedings of the Twenty-Ninth West Coast Conference on Formal Linguistics. Somerville, MA: Cascadilla, pp. 6371.Google Scholar
Galil, Z. & Megiddo, N. (1977). Cyclic ordering is NP-complete. Theoretical Computer Science, 5(2), 179–82.CrossRefGoogle Scholar
Gasser, M. & Lee, C. (1990). Networks and Morphophonemic Rules Revisited. Technical report 307. Bloomington: Computer Science Department, Indiana University.Google Scholar
Gerdemann, D. & Hulden, M. (2012). Practical finite state optimality theory. In Alegria, I. & Hulden, M., eds., Proceedings of the Tenth International Workshop on Finite State Methods and Natural Language Processing. Donostia-San Sebastian, Spain: Association for Computational Linguistics, pp. 1019. https://aclanthology.org/W12-6202.Google Scholar
Gildea, D. & Jurafsky, D. (1996). Learning bias and phonological rule induction. Computational Linguistics, 22(4), 497530. https://aclanthology.org/J96-4003.Google Scholar
Goedemans, R. W. N., Heinz, J. & van der Hulst, H. (2015). StressTyp2. http://st2.ullet.net.Google Scholar
Gold, E. M. (1967). Language identification in the limit. Information and Control, 10(5), 447–74.CrossRefGoogle Scholar
Goldsmith, J. (1976). Autosegmental Phonology. PhD thesis. Massachusetts Institute of Technology.Google Scholar
Goldsmith, J. (1992a). Grammar within a neural network. In Lima, S. D., Corrigan, R. L. & Iverson, G. K., eds., The Reality of Linguistic Rules: Proceedings of the Twenty-First Annual University of Wisconsin–Milwaukee Linguistics Symposium. Amsterdam: John Benjamins, pp. 95113.Google Scholar
Goldsmith, J. (1992b). Local modeling in phonology. In Davis, S., ed., Connectionism: Theory and Practice. Oxford: Oxford University Press, pp. 229–46.Google Scholar
Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language. Computational Linguistics, 27(2), 153–98. https://aclanthology.org/J01-2001.CrossRefGoogle Scholar
Goldsmith, J. (2006). An algorithm for the unsupervised learning of morphology. Natural Language Engineering, 12(4), 353–71.CrossRefGoogle Scholar
Goldsmith, J. & Larson, G. (1993). Using networks in a harmonic phonology. In Canakis, C., Chan, G. & Denton, J., eds., Papers from the Twenty-Eighth Regional Meeting of the Chicago Linguistic Society, Vol. 2. Chicago, IL: Chicago Linguistic Society, pp. 94125.Google Scholar
Goldsmith, J. & Riggle, J. (2012). Information theoretic approaches to phonological structure: The case of Finnish vowel harmony. Natural Language & Linguistic Theory, 30(3), 859–96.CrossRefGoogle Scholar
Goldsmith, J. & Xanthos, A. (2009). Learning phonological categories. Language, 85(1), 438.CrossRefGoogle Scholar
Goldwater, S. & Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. In Spenader, J., Eriksson, A. & Dahl, O., eds., Proceedings of the Stockholm Workshop on Variation within Optimality Theory. Stockholm: Stockholm University, Department of Linguistics, pp. 111–20.Google Scholar
Gordon, M. (2002). A factorial typology of quantity-insensitive stress. Natural Language & Linguistic Theory, 20(3), 491552.CrossRefGoogle Scholar
Gorman, K. (2013). Generative Phonotactics. PhD thesis. University of Pennsylvania.Google Scholar
Gorman, K. & Sproat, R. (2021). Finite-State Text Processing. Kentfield, CA: Morgan & Claypool.CrossRefGoogle Scholar
Gouskova, M. & Gallagher, G. (2020). Inducing nonlocal constraints from baseline phonotactics. Natural Language & Linguistic Theory, 38(1), 77116.CrossRefGoogle Scholar
Graf, T. (2009). Towards a factorization of string-based phonology. In Icard, T., ed., Proceedings of the Fourteenth Student Session of the European Summer School for Logic, Language, and Information. Stanford, CA: Association for Logic, Language and Information, pp. 7284.Google Scholar
Graf, T. (2010). Comparing incomparable frameworks: A model theoretic approach to phonology. Proceedings of the Thirty-Third Annual Penn Linguistics Colloquium, Vol. 16, Article 10. https://repository.upenn.edu/handle/20.500.14332/44749.Google Scholar
Graf, T. & Shafiei, N. (2019). C-command dependencies as TSL string constraints. In Jarosz, G., Nelson, M., O’Connor, B. & Pater, J., eds., Proceedings of the Society for Computation in Linguistics, Vol. 2, Article 22. https://scholarworks.umass.edu/scil/vol2/iss1/22.Google Scholar
Greenberg, J. H. (1950). The patterning of root morphemes in Semitic. Word, 6(2), 162–81. https://doi.org/10.1080/00437956.1950.11659378.CrossRefGoogle Scholar
Greenberg, J. H. & Jenkins, J. J. (1964). Studies in the psychological correlates of the sound system of American English. Word, 20(2), 157–77. https://doi.org/10.1080/00437956.1964.11659816.CrossRefGoogle Scholar
Hale, M. & Reiss, C. (1998). Formal and empirical arguments concerning phonological acquisition. Linguistic Inquiry, 29(4), 656–83.CrossRefGoogle Scholar
Hale, M. & Reiss, C. (2000a). Substance abuse and dysfunctionalism: Current trends in phonology. Linguistic Inquiry, 31(1), 157–69.CrossRefGoogle Scholar
Hale, M. & Reiss, C. (2000b). Phonology as cognition. In Burton‐Roberts, N., Carr, P. & Docherty, G., eds., Phonological Knowledge: Conceptual and Empirical Issues. Oxford: Oxford University Press, pp. 161–84.Google Scholar
Hale, M. & Reiss, C. (2008). The Phonological Enterprise. Oxford: Oxford University Press.CrossRefGoogle Scholar
Halle, M. (1959). The Sound Pattern of Russian: A Linguistic and Acoustical Investigation. The Hague: Mouton.Google Scholar
Halle, M. & Vergnaud, J.-R. (1987). An Essay on Stress. Cambridge, MA: MIT Press.Google Scholar
Hammond, M. (2003). Phonotactics and probabilistic ranking. In Carnie, A., Harley, H. & Willie, M., eds., Formal Approaches to Function in Grammar. Amsterdam: John Benjamins, pp. 319–32.Google Scholar
Hammond, M. (2004). Gradience, phonotactics, and the lexicon in English phonology. International Journal of English Studies, 4(2), 124.Google Scholar
Hansson, G. Ó. (2001). Theoretical and Typological Issues in Consonant Harmony. PhD thesis. University of California, Berkeley.Google Scholar
Hansson, G. Ó. (2010). Long-distance voicing assimilation in Berber: Spreading and/or agreement? In Heijl, M., ed., Actes du Congrès de l’ACL 2010/2010 CLA Conference Proceedings. Montreal: Canadian Linguistic Association. https://cla-acl.ca/pdfs/actes-2010/CLA2010_Hansson.pdf.Google Scholar
Hao, S. (2019). Finite-state optimality theory: Non-rationality of harmonic serialism. Journal of Language Modelling, 7(2), 4999.CrossRefGoogle Scholar
Hao, S. (2024). Universal generation for optimality theory is PSPACE-complete. Computational Linguistics, 50(1), 83117.CrossRefGoogle Scholar
Hao, S. & Bowers, D. (2019). Action-sensitive phonological dependencies. In Nicolai, G. & Cotterell, R., eds., Proceedings of the Sixteenth Workshop on Computational Research in Phonetics, Phonology and Morphology. Florence, Italy: Association for Computational Linguistics, pp. 218–28. https://aclanthology.org/W19-4225.Google Scholar
Hay, J., Pierrehumbert, J. & Beckman, M. E. (2004). Speech perception, well-formedness and the statistics of the lexicon. In Local, J., Ogden, R. & Temple, R. A. M., eds., Phonetic Interpretation: Papers in Laboratory Phonology VI. Cambridge: Cambridge University Press, pp. 5874.Google Scholar
Hayes, B. (1995). Metrical Stress Theory: Principles and Case Studies. Chicago, IL: University of Chicago Press.Google Scholar
Hayes, B. (2004). Phonological acquisition in optimality theory: The early stages. In Kager, R., Pater, J. & Zonneveld, W., eds., Fixing Priorities: Constraints in Phonological Acquisition. Cambridge: Cambridge University Press, pp. 158203.CrossRefGoogle Scholar
Hayes, B. & Londe, Z. (2006). Stochastic phonological knowledge: The case of Hungarian vowel harmony. Phonology, 23(1), 59104.CrossRefGoogle Scholar
Hayes, B. & White, J. (2013). Phonological naturalness and phonotactic learning. Linguistic Inquiry, 44(1), 4575.CrossRefGoogle Scholar
Hayes, B. & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry, 39(3), 379440.CrossRefGoogle Scholar
Heinz, J. (2007). The Inductive Learning of Phonotactic Patterns. PhD thesis. University of California, Los Angeles.Google Scholar
Heinz, J. (2009). On the role of locality in learning stress patterns. Phonology, 26(2), 303–51.CrossRefGoogle Scholar
Heinz, J. (2010a). String extension learning. In Hajič, J., Carberry, S., Clark, S. & Nivre, J., eds., Proceedings of the Forty-Eighth Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden: Association for Computational Linguistics, pp. 897906. https://aclanthology.org/P10-1092.Google Scholar
Heinz, J. (2010b). Learning long-distance phonotactics. Linguistic Inquiry, 41(4), 623–61.CrossRefGoogle Scholar
Heinz, J. (2011a). Computational phonology part I: Foundations. Language and Linguistics Compass, 5(4), 140–52.CrossRefGoogle Scholar
Heinz, J. (2011b). Computational phonology part II: Grammars, learning, and the future. Language and Linguistics Compass, 5(4), 153–68.CrossRefGoogle Scholar
Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman, L. & Plank, F., eds., Phonological Typology: Phonetics and Phonology. Berlin: De Gruyter Mouton, pp. 126–95.Google Scholar
Heinz, J. (2020). Deterministic analyses of optional processes. Talk given at University of Leipzig, December 9.Google Scholar
Heinz, J., de la Higuera, C. & van Zaanen, M. (2015). Grammatical Inference for Computational Linguistics. Synthesis Lectures on Human Language Technologies. Kentfield, CA: Morgan & Claypool.Google Scholar
Heinz, J. & Idsardi, W. (2011). Sentence and word complexity. Science, 333(6040), 295–7.CrossRefGoogle ScholarPubMed
Heinz, J. & Idsardi, W. (2013). What complexity differences reveal about domains in language. Topics in Cognitive Science, 5(1), 111–31. https://doi.org/10.1111/tops.12000.CrossRefGoogle ScholarPubMed
Heinz, J., Kobele, G. M. & Riggle, J. (2009). Evaluating the complexity of optimality theory. Linguistic Inquiry, 40(2), 277–88.CrossRefGoogle Scholar
Heinz, J. & Lai, R. (2013). Vowel harmony and subsequentiality. In Kornai, A. & Kuhlmann, M., eds., Proceedings of the Thirteenth Meeting on the Mathematics of Language. Sofia, Bulgaria: Association for Computational Linguistics, pp. 5263. https://aclanthology.org/W13-3006.Google Scholar
Heinz, J., Rawal, C. & Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In Lin, D., Matsumoto, Y. & Mihalcea, R., eds., Proceedings of the Forty-Ninth Annual Meeting of the Association for Computational Linguistics. Portland, OR: Association for Computational Linguistics, pp. 5864. https://aclanthology.org/P11-2011.Google Scholar
Heinz, J. & Rawski, J. (2022). History of phonology: Learnability. In Dresher, E. & van der Hulst, H., eds., The Oxford History of Phonology. Oxford: Oxford University Press, pp. 677–93.Google Scholar
Heinz, J. & Riggle, J. (2011). Learnability. In van Oostendorp, M., Ewen, C., Hume, E. & Rice, K., eds., Blackwell Companion to Phonology. Hoboken, NJ: Wiley-Blackwell, pp. 5478.Google Scholar
Heinz, J. & Sempere, J., eds. (2016). Topics in Grammatical Inference. Berlin: Springer.CrossRefGoogle Scholar
Howard, I. (1972). A Directional Theory of Rule Application in Phonology. PhD thesis. MIT.Google Scholar
Hsu, B. (2022). Gradient symbolic representations in harmonic grammar. Language & Linguistics Compass, 16(9), e12473.CrossRefGoogle Scholar
Hua, W. & Jardine, A. (2021). Learning input strictly local functions from their composition. In Chandlee, J., Eyraud, R., Heinz, J., Jardine, A. & van Zaanen, M., eds., Proceedings of the Fifteenth International Conference on Grammatical Inference. PMLR 153, pp. 4765. https://proceedings.mlr.press/v153/hua21a.html.Google Scholar
Hua, W., Jardine, A. & Dai, H. (2021). Learning underlying representations and input-strictly-local functions. In Reisinger, D. K. E. & Huijsmans, M., eds., Proceedings of the Thirty-Seventh West Coast Conference on Formal Linguistics. Somerville, MA: Cascadilla, pp. 143–51.Google Scholar
Hulden, M. (2009). Foma: A finite-state compiler and library. In Kreutel, J., ed., Proceedings of the Demonstrations Session at EACL 2009. Athens: Association for Computational Linguistics, pp. 2932. https://aclanthology.org/E09-2008.Google Scholar
Idsardi, W. J. (1988). The Computation of Prosody. PhD thesis. Massachusetts Institute of Technology.Google Scholar
Idsardi, W. J. (2006). A simple proof that optimality theory is computationally intractable. Linguistic Inquiry, 37(2), 271–5.CrossRefGoogle Scholar
Idsardi, W. J. (2009). Calculating metrical structure. In Raimy, E. and Cairns, C. E., eds., Contemporary Views on Architecture and Representations in Phonology. Cambridge, MA: MIT Press, pp. 191211.CrossRefGoogle Scholar
Inkelas, S., Orgun, C. O. & Zoll, C. (1997). The implications of lexical exceptions for the nature of grammar. In Roca, I., ed., Derivations and Constraints in Phonology. Oxford: Clarendon, pp. 393418.CrossRefGoogle Scholar
Ito, J. & Mester, A. (2003). Japanese Morphophonemics: Markedness and Word Structure. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Jäger, G. (2007). Maximum entropy models and stochastic optimality theory. In Zaenen, A., Simpson, J., Holloway King, T., Grimshaw, J., Maling, J. & Manning, C., eds., Architectures, Rules, and Preferences: A Festschrift for Joan Bresnan. Stanford, CA: Center for the Study of Language and Information, pp. 467–79.Google Scholar
Jain, S., Osherson, D., Royer, J. S. & Sharma, A. (1999). Systems That Learn: An Introduction to Learning Theory (Learning, Development and Conceptual Change), 2nd ed. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Jardine, A. (2016a). Computationally, tone is different. Phonology, 33(2), 247–83.CrossRefGoogle Scholar
Jardine, A. (2016b). Locality and Non-linear Representations in Tonal Phonology. PhD thesis. University of Delaware.Google Scholar
Jardine, A., Chandlee, J., Eyraud, R. & Heinz, J. (2014). Very efficient learning of structured classes of subsequential functions from positive data. In Clark, A., Kanazawa, M. & Yoshinaka, R., eds., Proceedings of the Twelfth International Conference on Grammatical Inference. PMLR 34, pp. 94108. https://proceedings.mlr.press/v34/jardine14a.html.Google Scholar
Jardine, A., Danis, N. & Iacoponi, L. (2021). A formal investigation of Q-theory in comparison to autosegmental representations. Linguistic Inquiry, 52(2), 333–58.CrossRefGoogle Scholar
Jardine, A. & Heinz, J. (2016a). Learning tier-based strictly 2-local languages. Transactions of the Association for Computational Linguistics, 4, 8798. https://aclanthology.org/Q16-1007.CrossRefGoogle Scholar
Jardine, A. & Heinz, J. (2016b). Markedness constraints are negative: An autosegmental constraint definition language. In Ershova, K., Falk, J., Geiger, J., Hebert, Z., Lewis, R. E. Jr., Munoz, P., Phillips, J. B. & Pillion, B., eds., Proceedings of the Fifty-First Annual Meeting of the Chicago Linguistic Society. Chicago, IL: Chicago Linguistic Society, pp. 301–15.Google Scholar
Jardine, A. & McMullin, K. (2017). Efficient learning of tier-based strictly k-local languages. In Drewes, F., Martín-Vide, C. & Truthe, B., eds., Proceedings of Language and Automata Theory and Applications, 11th International Conference. New York: Springer, pp. 6476.CrossRefGoogle Scholar
Jarosz, G. (2006a). Richness of the base and probabilistic unsupervised learning in optimality theory. In Wicentowski, R. & Kondrak, G., eds., Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology and Morphology. New York: Association for Computational Linguistics, pp. 50–9. https://aclanthology.org/W06-3207.Google Scholar
Jarosz, G. (2006b). Rich Lexicons and Restrictive Grammars: Maximum Likelihood Learning in Optimality Theory. PhD thesis. Johns Hopkins University.Google Scholar
Jarosz, G. (2009). Restrictiveness and phonological grammar and lexicon learning. In Elliot, M., Kirby, J., Sawada, O., Staraki, E. & Yoon, S., eds., Proceedings of the Forty-Third Annual Meeting of the Chicago Linguistic Society. Chicago, IL: Chicago Linguistic Society, pp. 123–37.Google Scholar
Jarosz, G. (2014). Serial markedness reduction. In Kingston, J., Moore-Cantwell, C., Pater, J. & Staubs, R., eds., Proceedings of the 2013 Annual Meeting on Phonology. Washington, DC: Linguistic Society of America. https://doi.org/10.3765/amp.v1i1.40.Google Scholar
Jarosz, G. (2016). Learning opaque and transparent interactions in harmonic serialism. In Hansson, G. Ó., Farris-Trimble, A., McMullin, K. & Pulleyblank, D., eds., Proceedings of the 2015 Annual Meeting on Phonology. Washington, DC: Linguistic Society of America. https://doi.org/10.3765/amp.v3i0.3671.Google Scholar
Jarosz, G. (2019). Computational modeling of phonological learning. In Annual Review of Linguistics, 5, 6790. https://doi.org/10.1146/annurev-linguistics-011718-011832.CrossRefGoogle Scholar
Jesney, K. & Tessier, A.-M. (2009). Gradual learning and faithfulness: Consequences of ranked vs. weighted constraints. In Abdurrahman, M., Schardl, A. & Walkow, M., eds., Proceedings of the Thirty-Eighth Meeting of the North East Linguistic Society. Amherst, MA: Graduate Linguistics Student Association, pp. 449–62.Google Scholar
Johnson, C. D. (1972). Formal Aspects of Phonological Description. The Hague: Mouton.CrossRefGoogle Scholar
Johnson, M. (1984). A discovery procedure for certain phonological rules. In Wilks, Y., ed., Proceedings of the Tenth International Conference on Computational Linguistics and the Twenty-Second Annual Meeting of the Association for Computational Linguistics. Stanford, CA: Association for Computational Linguistics, pp. 344–7. https://aclanthology.org/P84-1070.Google Scholar
Jurafsky, D. & Martin, J. (2008). Speech and Language Processing, 2nd ed. Hoboken, NJ: Prentice Hall.Google Scholar
Jurgec, P. (2011). Feature Spreading 2.0: A Unified Theory of Assimilation. PhD thesis. University of Tromso.Google Scholar
Kahng, J. & Durvasula, K. (2023). Can you judge what you don’t hear? Perception as a source of gradient wordlikeness judgements. Glossa: A Journal of General Linguistics, 8(1). https://doi.org/10.16995/glossa.9333.Google Scholar
Kaplan, R. & Kay, M. (1994). Regular models of phonological rule systems. Computational Linguistics, 20(3), 331–78. https://aclanthology.org/J94-3001.Google Scholar
Karttunen, L. (1998). The proper treatment of optimality in computational phonology. In Karttunen, L. & Oflazer, K., eds., Proceedings of the International Workshop on Finite State Methods in Natural Language Processing. Ankara, Turkey: Bilkent University, pp. 112. https://aclanthology.org/W98-1301.Google Scholar
Keane, J., Sehyr, Z., Emmorey, K. & Brentari, D. (2017). A theory-driven model of handshape similarity. Phonology, 34(2), 221–41.CrossRefGoogle Scholar
Kenstowicz, M. & Kisseberth, C. (1977). Topics in Phonological Theory. New York: Academic Press.Google Scholar
Kenstowicz, M. & Kisseberth, C. (1979). Generative Phonology: Description and Theory. New York: Academic Press.Google Scholar
Kiparsky, P. (1968). Linguistic universals and linguistic change. In Bach, E. & Harms, R. T., eds., Universals in Linguistic Theory. New York: Holt, Rinehart & Winston, pp. 170202.Google Scholar
Kiparsky, P. (1971). Historical linguistics. In Dingwall, W. O., ed., A Survey of Linguistic Science. College Park: University of Maryland Linguistics Program, pp. 576642.Google Scholar
Kiparsky, P. (2000). Opacity and cyclicity. The Linguistic Review, 17(2–4), 351–65.CrossRefGoogle Scholar
Kobele, G. (2006). Generating Copies: An Investigation into Structural Identity in Language and Grammar. PhD thesis. University of California, Los Angeles.Google Scholar
Kornai, A. (1991). Formal Phonology. PhD thesis. Stanford University.Google Scholar
Kornai, A. (2009). The complexity of phonology. Linguistic Inquiry, 40(4), 701–12.CrossRefGoogle Scholar
Koskenniemi, K. (1983). Two-Level Morphology. Publication no. 11, Department of General Linguistics. Helsinki: University of Helsinki.Google Scholar
Lambert, D. (2022). Unifying Classification Schemes for Languages and Processes with Attention to Locality and Relativizations Thereof. PhD thesis. Stony Brook University.Google Scholar
Lambert, D. (2023). Relativized adjacency. Journal of Logic, Language and Information, 32, 707–31.CrossRefGoogle Scholar
Lamont, A. (2019). Precedence is pathological: The problem of alphabetical sorting. In Stockwell, R., O’Leary, M., Xu, Z. & Zhou, Z. L., eds., Proceedings of the Thirty-Sixth West Coast Conference on Formal Linguistics. Somerville, MA: Cascadilla, pp. 243–9.Google Scholar
Lamont, A. (2021). Optimizing over subsequences generates context-sensitive languages. Transactions of the Association for Computational Linguistics, 9, 528–37. https://aclanthology.org/2021.tacl-1.32.CrossRefGoogle Scholar
Lamont, A. (2022). Optimality theory implements complex functions with simple constraints. Phonology, 38(4), 729–74.Google Scholar
Leben, W. (1973). Suprasegmental Phonology. PhD thesis. Massachusetts Institute of Technology.Google Scholar
Legendre, G., Miyata, Y. & Smolensky, P. (1990). Can connectionism contribute to syntax? Harmonic grammar, with an application. In Ziolkowski, M., Noske, M. & Deaton, K., eds., Papers from the Twenty-Sixth Regional Meeting of the Chicago Linguistic Society, Vol. 1. Chicago, IL: Chicago Linguistic Society, pp. 237–52.Google Scholar
Liberman, M. (1975). The Intonational System of English. PhD thesis. Massachusetts Institute of Technology.Google Scholar
Liberman, M. & Prince, A. (1977). On stress and linguistic rhythm. Linguistic Inquiry, 8(2), 249336.Google Scholar
Lind, D. & Marcus, B. (1995). Symbolic Dynamics and Coding. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Linzen, T. & O’Donnell, T. J. (2015). A model of rapid phonotactic generalization. In Màrquez, L., Callison-Burch, C. & Su, J., eds., Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, pp. 1126–31. https://aclanthology.org/D15-1134.Google Scholar
Lombardi, L. (1999). Positional faithfulness and voicing assimilation in optimality theory. Natural Language & Linguistic Theory, 17(2), 267302.CrossRefGoogle Scholar
Magri, G. (2012). Convergence of error-driven ranking algorithms. Phonology, 29(2), 213–69.CrossRefGoogle Scholar
Magri, G. (2013a). The complexity of learning in OT and its implications for the acquisition of phonotactics. Linguistic Inquiry, 44(3), 433–68.CrossRefGoogle Scholar
Magri, G. (2013b). HG has no computational advantages over OT: Toward a new toolkit for computational OT. Linguistic Inquiry, 44(4), 569609.CrossRefGoogle Scholar
Magri, G. (2016). Error-driven learning in optimality theory and harmonic grammar: A comparison. Phonology, 33(3), 493532.CrossRefGoogle Scholar
Mailhot, F. & Reiss, C. (2007). Computing long-distance dependencies in vowel harmony. Biolinguistics, 1. https://doi.org/10.5964/bioling.8587.CrossRefGoogle Scholar
Markowska, M. & Heinz, J. (2023). Empirical and theoretical arguments for using properties of letters for the learning of sequential functions. In Coste, F., Ouardi, F. & Rabusseau, G., eds., Proceedings of the Sixteenth International Conference on Grammatical Inference. PMLR 217, pp. 270–4. https://proceedings.mlr.press/v217/markowska23a/markowska23a.pdf.Google Scholar
Matusevych, Y., Schatz, T., Kamper, H., Feldman, N. H. & Goldwater, S. (2023). Infant phonetic learning as perceptual space learning: A crosslinguistic evaluation of computational models. Cognitive Science, 47(7), e13314. https://doi.org/10.1111/cogs.13314.CrossRefGoogle ScholarPubMed
Mayer, C. (2020). An algorithm for learning phonological classes from distributional similarity. Phonology, 37(1), 91131.CrossRefGoogle Scholar
Mayer, C. & Daland, R. (2020). A method for projecting features from observed sets of phonological classes. Linguistic Inquiry, 51(4), 725–63.CrossRefGoogle Scholar
Mayer, C. & Nelson, M. (2020). Phonotactic learning with neural language models. In Ettinger, A., Jarosz, G. & Nelson, M., eds., Proceedings of the Society for Computation in Linguistics, Vol. 3, Article 16. https://scholarworks.umass.edu/scil/vol3/iss1/16.Google Scholar
McCarthy, J. J. (2000). Harmonic serialism and parallelism. In Hirotani, M., Coetzee, A., Hall, N. & Kim, J., eds., Proceedings of the Thirtieth Annual Meeting of the North East Linguistic Society, Vol. 2. Amherst, MA: Graduate Linguistics Student Association, pp. 501–24. https://scholarworks.umass.edu/nels/vol30/iss2/8.Google Scholar
McCollum, A. G., Baković, E., Mai, A. & Meinhardt, E. (2020). Unbounded circumambient patterns in segmental phonology. Phonology, 37(2), 215–55.CrossRefGoogle Scholar
McMullin, K. (2016). Tier-Based Locality in Long-Distance Phonotactics: Learnability and Typology. PhD thesis. University of British Columbia.Google Scholar
McNaughton, R. & Papert, S. (1971). Counter-Free Automata. Cambridge, MA: MIT Press.Google Scholar
Meinhardt, E., Mai, A., Baković, E. & McCollum, A. (2024). Weak determinism and the computational consequences of interaction. Natural Language & Linguistic Theory. https://doi.org/10.1007/s11049-023-09578-1.CrossRefGoogle Scholar
Merchant, N. (2008). Discovering Underlying Forms: Contrast Pairs and Ranking. PhD thesis. Rutgers University.Google Scholar
Merchant, N. & Tesar, B. (2008). Learning underlying forms by searching restricted lexical subspaces. In Edwards, R. L., Midtlyng, P. J., Sprague, C. L. & Stensrud, K. G., eds., Proceedings of the Forty-First Meeting of the Chicago Linguistic Society, Vol. 2. Chicago, IL: Chicago Linguistic Society, pp. 3347.Google Scholar
Merrill, W. (2023). Formal languages and the NLP black box. In Drewes, F. & Volkov, M., eds., Developments in Language Theory. New York: Springer, pp. 18.Google Scholar
Mielke, J. (2008). The Emergence of Distinctive Features. Oxford: Oxford University Press.CrossRefGoogle Scholar
Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational Linguistics, 23(2), 269311. https://aclanthology.org/J97-2003.Google Scholar
Mohri, M., Rostamizadeh, A. & Talwalkar, A. (2018). Foundations of Machine Learning, 2nd ed. Cambridge, MA: MIT Press.Google Scholar
Moore-Cantwell, C. & Pater, J. (2016). Gradient exceptionality in maximum entropy grammar with lexically specific constraints. Catalan Journal of Linguistics, 15, 5366. https://doi.org/10.5565/rev/catjl.183.CrossRefGoogle Scholar
Nazarov, A. (2016). Extending Hidden Structure Learning: Features, Opacity, and Exceptions. PhD thesis. University of Massachusetts, Amherst.Google Scholar
Nazarov, A. & Pater, J. (2017). Learning opacity in stratal maximum entropy grammar. Phonology, 34(2), 299324.CrossRefGoogle Scholar
Nelson, M. (2019). Segmentation and UR acquisition with UR constraints. In Jarosz, G., Nelson, M., O’Connor, B. & Pater, J., eds., Proceedings of the Society for Computation in Linguistics, Vol. 2, Article 8. https://scholarworks.umass.edu/scil/vol2/iss1/8.Google Scholar
Nelson, M. (2022). Phonotactic Learning with Distributional Representations. PhD thesis. University of Massachusetts, Amherst.Google Scholar
Nelson, S. (2022). A model theoretic perspective on phonological feature systems. In Ettinger, A., Hunter, T. & Prickett, B., eds., Proceedings of the Society for Computation in Linguistics, Vol. 5, Article 2. https://scholarworks.umass.edu/scil/vol5/iss1/2.Google Scholar
Nevins, A. (2010). Locality in Vowel Harmony. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Nyman, A. & Tesar, B. (2019). Determining underlying presence in the learning of grammars that allow insertion and deletion. Glossa: A Journal of General Linguistics, 4(1), 37. https://doi.org/10.5334/gjgl.603.Google Scholar
Oakden, C. (2020). Notational equivalence in tonal geometry. Phonology, 37(2), 257–96.CrossRefGoogle Scholar
Odden, D. (2022). Radical substance-free phonology and feature learning. The Canadian Journal of Linguistics/La revue canadienne de linguistique, 67(4), pp. 500–51.CrossRefGoogle Scholar
Ohala, J. J. & Ohala, M. (1986). Testing hypotheses regarding the psychological manifestation of morpheme structure constraints. In Ohala, J. J. & Jaeger, J. J., eds., Experimental Phonology. Cambridge, MA: Academic Press, pp. 239–52.Google Scholar
O’Hara, C. (2017). How abstract is more abstract? Learning abstract underlying representations. Phonology, 34(2), 325–45.Google Scholar
Oncina, J., García, P. & Vidal, E. (1993). Learning subsequential transducers for pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5), 448–58.CrossRefGoogle Scholar
Osherson, D., Weinstein, S. & Stob, M. (1986). Systems That Learn. Cambridge, MA: MIT Press.Google Scholar
Padgett, J. (1995). Partial class behavior and nasal place assimilation. In Suzuki, K. & Elzinga, D., eds., Proceedings of the South Western Optimality Theory Workshop. http://hdl.handle.net/10150/227277.Google Scholar
Pater, J. (2008). Gradual learning and convergence. Linguistic Inquiry, 39(2), 334–45.CrossRefGoogle Scholar
Pater, J. (2009). Weighted constraints in generative linguistics. Cognitive Science, 33(6), 9991035. https://doi.org/10.1111/j.1551-6709.2009.01047.x.CrossRefGoogle ScholarPubMed
Pater, J. (2019). Generative linguistics and neural networks at 60: Foundation, friction, and fusion. Language, 95(1), e4174.CrossRefGoogle Scholar
Pater, J., Jesney, K., Staubs, R. D. & Smith, B. (2012). Learning probabilities over underlying representations. In Cahill, L. & Albright, A., eds., Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology. Montreal: Association for Computational Linguistics, pp. 6271. https://aclanthology.org/W12-2308.Google Scholar
Peperkamp, S., Le Calvez, R., Nadal, J.-P. & Dupoux, E. (2006). The acquisition of allophonic rules: Statistical learning with linguistic constraints. Cognition, 101(3), B3141.CrossRefGoogle ScholarPubMed
Pierrehumbert, J. (2001a). Exemplar dynamics: Word frequency, lenition and contrast. In Bybee, J. & Hopper, P., eds., Frequency and the Emergence of Linguistic Structure. Amsterdam: John Benjamins, pp. 137–57.Google Scholar
Pierrehumbert, J. (2001b). Stochastic phonology. GLOT, 5(6), 113.Google Scholar
Pinker, S. & Prince, A. (1994). Regular and irregular morphology and the psychological status of rules of grammar. In Lima, S. D., Corrigan, R. L. & Iverson, G. K., eds., The Reality of Linguistic Rules. Amsterdam: John Benjamins, pp. 321–52.Google Scholar
Potts, C. & Pullum, G. K. (2002). Model theory and the content of OT constraints. Phonology, 19(3), 361–93.CrossRefGoogle Scholar
Prickett, B. (2019). Learning biases in opaque interactions. Phonology, 36(4), 627–53.CrossRefGoogle Scholar
Prickett, B. (2021). Modelling a subregular bias in phonological learning with recurrent neural networks. Journal of Language Modelling, 9(1), 6796. https://doi.org/10.15398/jlm.v9i1.251.CrossRefGoogle Scholar
Prickett, B. & Pater, J. (2022). Learning stress patterns with a sequence-to-sequence neural network. In Ettinger, A., Hunter, T. & Prickett, B., eds., Proceedings of the Society for Computation in Linguistics, Vol. 5, Article 10. https://aclanthology.org/2022.scil-1.9.Google Scholar
Prince, A. (1983). Relating to the grid. Linguistic Inquiry, 14(1), 19100.Google Scholar
Prince, A. (2000). Comparative Tableaux. Master’s thesis. Rutgers University. ROA-376.Google Scholar
Prince, A. & Smolensky, P. (1993). Optimality Theory: Constraint Interaction in Generative Grammar. Technical Report 2. New Brunswick, NJ: Rutgers University Center for Cognitive Science.Google Scholar
Prince, A. & Smolensky, P. (2004). Optimality Theory: Constraint Interaction in Generative Grammar. Hoboken, NJ: Wiley-Blackwell.CrossRefGoogle Scholar
Prince, A. & Tesar, B. (2004). Learning phonotactic distributions. In Kager, R., Pater, J. & Zonneveld, W., eds., Constraints in Phonological Acquisition. Cambridge: Cambridge University Press, pp. 245–91.Google Scholar
Rasin, E., Berger, I., Lan, N., Shefi, I. & Katzir, R. (2021). Approaching explanatory adequacy in phonology using minimum description length. Journal of Language Modelling, 9(1), 1766. https://doi.org/10.15398/jlm.v9i1.266.CrossRefGoogle Scholar
Rasin, E. & Katzir, R. (2016). On evaluation metrics in optimality theory. Linguistic Inquiry, 47(2), 235–82.CrossRefGoogle Scholar
Rasin, E., Shefi, I. & Katzir, R. (2020). A unified approach to several learning challenges in phonology. In Asatryan, M., Song, Y. & Whitmal, A., eds., Proceedings of the Fiftieth Meeting of the North East Linguistic Society, Vol. 3. Amherst, MA: Graduate Linguistics Student Association, pp. 7387.Google Scholar
Rawski, J. (2017). Phonological complexity across speech and sign. In Edmiston, D., Ermolaeva, M., Hakgüder, E., Lai, J., Montemurro, K., Rhodes, B., Sankhagowit, A. & Tabatowski, M., eds., Proceedings of the Fifty-Third Annual Meeting of the Chicago Linguistic Society. Chicago, IL: Chicago Linguistic Society, pp. 307–20.Google Scholar
Rawski, J. (2021). Structure and Learning in Natural Language. PhD thesis. Stony Brook University.Google Scholar
Reiss, C. (2008). Constraining the learning path without constraints, or The Ocp and NoBanana. In Vaux, B. & Nevins, A., eds., Rules, Constraints, and Phonological Phenomena. Oxford: Oxford University Press, pp. 252302.CrossRefGoogle Scholar
Riggle, J. (2004). Generation, Recognition, and Learning in Finite State Optimality Theory. PhD thesis. University of California, Los Angeles.Google Scholar
Riggle, J. & Wilson, C. (2006). Local optionality. In Bateman, L. & Ussery, C., eds., Proceedings of the Thirty-Fifth Annual Meeting of the North East Linguistic Society, Vol. 2. Amherst, MA: Graduate Linguistics Student Association, pp. 539–50.Google Scholar
Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D. & Wibel, S. (2010). On languages piecewise testable in the strict sense. In Ebert, C., Jäger, G. & Michaelis, J., eds., The Mathematics of Language. New York: Springer, pp. 255–65.Google Scholar
Rogers, J. & Lambert, D. (2019). Extracting subregular constraints from regular stringsets. Journal of Language Modelling, 7(2), 143–76.CrossRefGoogle Scholar
Rogers, J. & Pullum, G. (2011). Aural pattern recognition experiments and the subregular hierarchy. Journal of Logic, Language and Information, 20, 329–42.CrossRefGoogle Scholar
Rose, S. & Walker, R. (2004). A typology of consonant agreement as correspondence. Language, 80(3), 475531.CrossRefGoogle Scholar
Rumelhart, D. E. & McClelland, J. L. (1986). On learning the past tenses of English verbs. In Rumelhart, D. E. & McClelland, J. L., eds., Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 2. Cambridge, MA: MIT Press, pp. 216–71.CrossRefGoogle Scholar
Sagey, E. (1986). The Representation of Features and Relations in Non-linear Phonology. PhD thesis. Massachusetts Institute of Technology.Google Scholar
Sakarovitch, J. (2009). Elements of Automata Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–4.CrossRefGoogle Scholar
Scobbie, J. M., Coleman, J. S. & Bird, S. (1996). Key aspects of declarative phonology. In Durand, J. & Laks, B., eds., Current Trends in Phonology: Models and Methods, Vol. 2. Manchester, UK: ESRI, University of Salford, pp. 685709.Google Scholar
Shademan, S. (2006). Is phonotactic knowledge grammatical knowledge? In Baumer, D., Montero, D. and Scanlon, M., eds., Proceedings of the Twenty-Fifth West Coast Conference on Formal Linguistics. Somerville, MA: Cascadilla, pp. 371–9.Google Scholar
Shieber, S. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8, 333–43.CrossRefGoogle Scholar
Shih, S. (2017). Constraint conjunction in weighted probabilistic grammar. Phonology, 34(2), 243–68.CrossRefGoogle Scholar
Shih, S. & Inkelas, S. (2016). Morphologically-conditioned tonotactics in multilevel maximum entropy grammar. In Hansson, G. Ó., Farris-Trimble, A., McMullin, K. & Pulleyblank, D., eds., Proceedings of the 2015 Annual Meeting on Phonology. Washington, DC: Linguistic Society of America. https://doi.org/10.3765/amp.v3i0.3659.Google Scholar
Shih, S. & Inkelas, S. (2019). Autosegmental aims in surface-optimizing phonology. Linguistic Inquiry, 50(1), 137–96.CrossRefGoogle Scholar
Smith, B. & Pater, J. (2020). French schwa and gradient cumulativity. Glossa: A Journal of General Linguistics, 5(1), 24. https://doi.org/10.5334/gjgl.583.Google Scholar
Smith, C. (2018). Harmony in Gestural Phonology. PhD thesis. University of Southern California.Google Scholar
Smith, C., O’Hara, C., Rosen, E. & Smolensky, P. (2021). Emergent gestural scores in a recurrent neural network model of vowel harmony. In Ettinger, A., Pavlich, E. & Prickett, B., eds., Proceedings of the Society for Computation in Linguistics, Vol. 4, Article 7. https://scholarworks.umass.edu/scil/vol4/iss1/7.Google Scholar
Smolensky, P. (1996). On the comprehension/production dilemma in child language. Linguistic Inquiry, 27(4), 720–31.Google Scholar
Smolensky, P. & Goldrick, M. (2016). Gradient Symbolic Representations in Grammar: The Case of French Liaison. Master’s thesis. Johns Hopkins University of Northwestern University. ROA-1286. https://roa.rutgers.edu/content/article/files/1552_smolensky_1.pdf.Google Scholar
Smolensky, P., Goldrick, M. & Mathis, D. (2014). Optimization and quantization in gradient symbol systems: A framework for integrating the continuous and the discrete in cognition. Cognitive Science, 38(6), 1102–38. https://doi.org/10.1111/cogs.12047.CrossRefGoogle ScholarPubMed
Smolensky, P. & Legendre, G. (2006). The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar. Cambridge, MA: MIT Press.Google Scholar
Stanley, R. (1967). Redundancy rules in phonology. Language, 43(2), 393436.CrossRefGoogle Scholar
Staubs, R. D. & Pater, J. (2016). Learning serial constraint-based grammars. In McCarthy, J. J. & Pater, J., eds., Harmonic Grammar and Harmonic Serialism. London: Equinox, pp. 369–88.Google Scholar
Strother-Garcia, K. (2019). Using Model Theory in Phonology: A Novel Characterization of Syllable Structure and Syllabification. PhD thesis. University of Delaware.Google Scholar
Strother-Garcia, K., Heinz, J. & Hwangbo, H. J. (2016). Using model theory for grammatical inference: A case study from phonology. In Verwer, S., van Zaanen, M. & Smetsers, R., eds., Proceedings of the Thirteenth International Conference on Grammatical Inference, PMLR 57, pp. 6678. https://proceedings.mlr.press/v57/strother-garcia16.html.Google Scholar
Tesar, B. (1995). Computational Optimality Theory. PhD thesis. University of Colorado, Boulder.Google Scholar
Tesar, B. (1998). Using the mutual inconsistency of structural descriptions to overcome ambiguity in language learning. In Tamanji, P. N. & Kusumoto, K., eds., Proceedings of the Twenty-Eighth Annual Meeting of the North East Linguistic Society, Vol. 1. Amherst, MA: Graduate Linguistics Student Association, pp. 469–83.Google Scholar
Tesar, B. (2007). Learnability. In de Lacy, P., ed., The Cambridge Handbook of Phonology. Cambridge: Cambridge University Press, pp. 555–74.Google Scholar
Tesar, B. (2014). Output-Driven Phonology: Theory and Learning. Cambridge: Cambridge University Press.Google Scholar
Tesar, B. (2017). Phonological learning with output-driven maps. Language Acquisition, 24(2), 148–67.CrossRefGoogle Scholar
Tesar, B., Alderete, J., Horwood, G., Merchant, N., Nishitani, K. & Prince, A. (2003). Surgery in language learning. In Garding, G. & Tsujimura, M., eds., Proceedings of the Twenty-Second West Coast Conference on Formal Linguistics. Somerville, MA: Cascadilla, pp. 477–90. https://doi.org/10.7282/T3Z036GP.Google Scholar
Tesar, B. & Prince, A. (2007). Using phonotactics to learn phonological alternations. In Cihlar, J., Franklin, A., Kaiser, D. & Kimbara, J., eds., Proceedings of the Thirty-Ninth Conference of the Chicago Linguistic Society, Vol. 2. Chicago, IL: Chicago Linguistic Society, pp. 241–71.Google Scholar
Tesar, B. & Smolensky, P. (1993). The Learnability of Optimality Theory: An Algorithm and Some Basic Complexity Results. Master’s thesis. University of Colorado, Boulder. ROA-2. http://ruccs.rutgers.edulroa.html.Google Scholar
Tesar, B. & Smolensky, P. (1996). Learnability in Optimality Theory. Technical report 96–3, Department of Cognitive Science, Johns Hopkins University. ROA-156. http://ruccs.rutgers.edulroa.html.Google Scholar
Tesar, B. & Smolensky, P. (1998). Learnability in optimality theory. Linguistic Inquiry, 29(2), 229–68.CrossRefGoogle Scholar
Tesar, B. & Smolensky, P. (2000). Learnability in Optimality Theory. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Tessier, A.-M. (2007). Biases and Stages in Phonological Acquisition. PhD thesis. University of Massachusetts, Amherst.Google Scholar
Tessier, A.-M. (2009). Frequency of violation and constraint-based phonological learning. Lingua, 119(1), 638.CrossRefGoogle Scholar
Tessier, A.-M. (2012). Error-driven learning in harmonic serialism. In Keine, S. & Sloggett, S., eds., Proceedings of the Forty-Second Annual Meeting of the North East Linguistic Society. Amherst, MA: Graduate Linguistics Student Association.Google Scholar
Tessier, A.-M. (2017). Learnability and learning algorithms in phonology. Oxford Research Encyclopedia in Linguistics.CrossRefGoogle Scholar
Tessier, A.-M. & Jesney, K. (2014). Learning in harmonic serialism and the necessity of a richer base. Phonology, 31(1), 155–78.CrossRefGoogle Scholar
Thorburn, C., Lau, E. & Feldman, N. (2022). A reinforcement learning approach to speech category acquisition. In Gong, Y. & Kpogo, F., eds., Proceedings of the Forty-Sixth Boston University Conference on Language Development, Vol. 2. Somerville, MA: Cascadilla, pp. 797811. www.lingref.com/bucld/46/BUCLD46-60.pdf.Google Scholar
Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–42. https://doi.org/10.1145/1968.1972.CrossRefGoogle Scholar
Valiant, L. (2013). Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World. New York: Basic Books.Google Scholar
Vaux, B. (2008). Why the phonological component must be serial and rule-based. In Vaux, B. & Nevins, A., eds., Rules, Constraints, and Phonological Phenomena. Oxford: Oxford University Press, pp. 2060.CrossRefGoogle Scholar
Vaysse, O. (1986). Addition molle et fonctions p-locales. Semigroup Forum, 34, 157–75.CrossRefGoogle Scholar
Vitevitch, M. S. & Luce, P. A. (1998). When words compete: Levels of processing in perception of spoken words. Psychological Science, 9(4), 325–9.CrossRefGoogle Scholar
Vitevitch, M. S., Luce, P. A., Charles-Luce, J. & Kemmerer, D. (1997). Phonotactics and syllable stress: Implications for the processing of spoken nonsense words. Language and Speech, 40(1), 4762.CrossRefGoogle ScholarPubMed
Vu, M. H., Shafiei, N. & Graf, T. (2019). Case assignment in TSL syntax: A case study. In Jarosz, G., Nelson, M., O’Connor, B. & Pater, J., eds., Proceedings of the Society for Computation in Linguistics, Vol. 2, Article 28. https://scholarworks.umass.edu/scil/vol2/iss1/28.Google Scholar
Wang, Y. & Hayes, B. (2022). Learning underlying representations: Expectation maximization and the KK hierarchy. Poster presented at the Annual Meeting on Phonology. University of California, Los Angeles, October 21–23.Google Scholar
Washington, J., Ipasov, M. & Tyers, F. (2012). A finite-state morphological transducer for Kyrgyz. In Calzolari, N., Choukri, K., Declerck, T., Doğan, M. U., Maegaard, B., Mariani, J., Moreno, A., Odijk, J. & Piperidis, S., eds., Proceedings of the Eighth International Conference on Language Resources and Evaluation. Istanbul: ELRA, pp. 934–40. www.lrec-conf.org/proceedings/lrec2012/pdf/1077_Paper.pdf.Google Scholar
Wieczorek, W. (2017). Grammatical Inference: Algorithms, Routines and Applications. New York: Springer.CrossRefGoogle Scholar
Wilson, C. (2003). Analyzing Unbounded Spreading with Constraints: Marks, Targets, and Derivations. Master’s thesis. University of California, Los Angeles.Google Scholar
Wilson, C. & Gallagher, G. (2018). Accidental gaps and surface-based phonotactic learning: A case study of South Bolivian Quechua. Linguistic Inquiry, 49(3), 610–23.CrossRefGoogle Scholar
Wilson, C. & Obdeyn, M. (2009). Simplifying subsidiary theory: Statistical evidence from Arabic, Muna, Shona, and Wargamay. Master’s thesis. Johns Hopkins University.Google Scholar
Wu, K. & Heinz, J. (2023). String extension learning despite noisy intrusions. In Coste, F., Ouardi, F. & Rabusseau, G., eds., Proceedings of the Sixteenth International Conference on Grammatical Inference. PMLR 217, pp. 8095. https://proceedings.mlr.press/v217/wu23a.html.Google Scholar
Yang, C. (2016). The Price of Linguistic Productivity: How Children Learn to Break the Rules of Language. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Yip, M. (1989). Contour tones. Phonology, 6(1), 149–74.CrossRefGoogle Scholar
Zuraw, K. (2000). Patterned Exceptions in Phonology. PhD thesis. University of California, Los Angeles.Google Scholar
Zymet, J. (2018). Lexical Propensities in Phonology: Corpus and Experimental Evidence, Grammar, and Learning. PhD thesis. University of California, Los Angeles.Google Scholar
Zymet, J. (2019). Learning a frequency-matching grammar together with lexical idiosyncrasy: MaxEnt versus hierarchical regression. In Hout, K., Mai, A., McCollum, A., Rose, S. & Zaslansky, M., eds., Proceedings of the 2018 Annual Meeting on Phonology. Washington, DC: Linguistic Society of America. https://doi.org/10.3765/amp.v7i0.4495.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantitative and Computational Approaches to Phonology
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Quantitative and Computational Approaches to Phonology
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Quantitative and Computational Approaches to Phonology
Available formats
×