Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:52:31.614Z Has data issue: false hasContentIssue false

Paraconsistency in Mathematics

Published online by Cambridge University Press:  25 July 2022

Zach Weber
Affiliation:
University of Otago, New Zealand

Summary

Paraconsistent logic makes it possible to study inconsistent theories in a coherent way. From its modern start in the mid-20th century, paraconsistency was intended for use in mathematics, providing a rigorous framework for describing abstract objects and structures where some contradictions are allowed, without collapse into incoherence. Over the past decades, this initiative has evolved into an area of non-classical mathematics known as inconsistent or paraconsistent mathematics. This Element provides a selective introductory survey of this research program, distinguishing between `moderate' and `radical' approaches. The emphasis is on philosophical issues and future challenges.
Get access
Type
Element
Information
Online ISBN: 9781108993968
Publisher: Cambridge University Press
Print publication: 11 August 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. 1). Princeton: Princeton University Press.Google Scholar
Arruda, A. I. (1979). The Russell Paradox in the systems NFn. In A. Arruda, N. da Costa, & A. Sette (Eds.), Proceedings of the third Brazilian conference on mathematical logic (pp. 112). Campinas: Sociedade Brasileira de Logica.Google Scholar
Arruda, A. I. (1989). Aspects of the historical development of paraconsistent logic. In Priest, G., Routley, R., & Norman, J. (Eds.), Paraconsistent logic: Essays on the Inconsistent (pp. 99130). Munich: Philosophia Verlag.Google Scholar
Arruda, A. I., & Batens, D. (1982). Russell’s set versus the universal set in paraconsistent set theory. Logique et Analyse, 25(8), 121133.Google Scholar
Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 7, 103105.Google Scholar
Asenjo, F. G. (1989). Toward an antinomic mathematics. In Priest, G., Routley, R., & Norman, J. (Eds.), Paraconsistent logic: Essays on the Inconsistent (pp. 394414). Munich: Philosophia Verlag.CrossRefGoogle Scholar
Asenjo, F. G., & Tamburino, J. (1975). Logic of antinomies. Notre Dame Journal of Formal Logic, 16(1), 1744.Google Scholar
Badia, G., Weber, Z., & Girard, P. (2022). Paraconsistent metatheory: New proofs with old tools. Journal of Philosophical Logic https://link.springer.com/article/10.1007/s10992-022-09651-xGoogle Scholar
Balaguer, M. (1998). Platonism and anti-platonism in mathematics. Oxford: Oxford University Press.CrossRefGoogle Scholar
Barrio, E., & Da Re, B. (2018). Paraconsistency and its philosophical interpretations. Australasian Journal of Logic, 15(2), 151170.Google Scholar
Barrio, E., Pailos, F., & Szmuc, D. (2017). A paraconsisitent route to semantic closure. Logic Journal of the IGPL, 25(4), 387401.CrossRefGoogle Scholar
Batens, D. (2020). Adaptive Fregean set theory. Studia Logica, 108, 903939.Google Scholar
Beall, J. (1999). From full blooded platonism to really full blooded platonism. Philosophia Mathematica, 7(3), 322325.Google Scholar
Beall, J. (2009). Spandrels of truth. Oxford: Oxford University Press.Google Scholar
Beall, J. (2011). Multiple-conclusion LP and default classicality. Review of Symbolic Logic, 4(2), 326336.Google Scholar
Beall, J. (2013a). Free of detachment: Logic, rationality, and gluts. Noûs, 49(2), 410423.Google Scholar
Beall, J. (2013b). Shrieking against gluts: the solution to the ‘just true’ problem. Analysis, 73(3), 438445.CrossRefGoogle Scholar
Beall, J. (2018). The simple argument for subclassical logic. Philosophical Issues, 28(1), 3054.CrossRefGoogle Scholar
Beall, J., Forster, T., & Seligman, J. (2013). A note on freedom from detachment in the logic of paradox. Notre Dame Journal of Formal Logic, 54(1), 1520.Google Scholar
Beall, J., & Ripley, D. (2018). Nonclassical theories of truth. In M. Glanzberg (Ed.), Oxford handbook of truth (pp. 739754). Oxford: Oxford University Press.Google Scholar
Bell, J. L. (2005). Set theory: Boolean-valued models and independence proofs. Oxford: Oxford University Press.Google Scholar
Bell, J. L. (2008). A primer of infinitesimal analysis (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Belnap, N. D. (1977). A useful four-valued logic. In Dunn, J. & Epstein, G. (Eds.), Modern uses of multiple-valued logics (pp. 837). Dordrecht: Reidel.Google Scholar
Berto, F. (2007). How to sell a contradiction: The logic and metaphysics of inconsistency. London: College.Google Scholar
Brady, R. (1971). The consistency of the axioms of the axioms of abstraction and extensionality in a three-valued logic. Notre Dame Journal of Formal Logic, 12, 447453.CrossRefGoogle Scholar
Brady, R. (1989). The non-triviality of dialectical set theory. In Priest, G., Routley, R., & Norman, J. (Eds.), Paraconsistent Logic: Essays on the inconsistent (pp. 437470). Munich: Philosophia Verlag.CrossRefGoogle Scholar
Brady, R. (2006). Universal logic. Stanford: CSLI.Google Scholar
Brady, R., & Mortensen, C. (2014). Logic. In Oppy, G. & Trakakis, N. (Eds.), History of philosophy in Australia and New Zealand (pp. 679705). Dordrecht: Springer.CrossRefGoogle Scholar
Brady, R., & Routley, R. (1989). The non-triviality of extensional dialectical set theory. In Priest, G., Routley, R., & Norman, J. (Eds.), Paraconsistent logic: Essays on the inconsistent (pp. 415436). Munich: Philosophia Verlag.Google Scholar
Brady, R., & Rush, P. (2008). What is wrong with Cantor’s diagonal argument? Logique et Analyse, 51(202), 185219.Google Scholar
Brown, B., & Priest, G. (2004). Chunk and permeate, a paraconsistent inference strategy. Part I: The infinitesimal calculus. Journal of Philosophical Logic, 33, 379388.Google Scholar
Brown, J. (2008). Philosophy of mathematics (2nd ed.). New York: Routledge.Google Scholar
Burgess, J. P. (2005). No requirement of relevance. In Shapiro, S. (Ed.), The Oxford handbook of philosophy of mathematics and logic (pp. 727750). Oxford: Oxford University Press.Google Scholar
Carnielli, W., Coniglio, M., & Marcos, J. (2007). Logics of formal inconsistency. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosphical logic (Vol. 14, pp. 193). Dordrecht: Springer Verlag.Google Scholar
Carnielli, W., & Coniglio, M. E. (2016). Paraconsistent logic: Consistency, contradiction and negation. Cham, Switzerland: Springer.Google Scholar
Carnielli, W., & Coniglio, M. E. (2021). Twist-valued models for three-valued paraconsistent set theory. Logic and Logical Philosophy, 30(2), 187226.Google Scholar
Carrara, M., & Martino, E. (2021). A note on Gödel, Priest and naїve proof. Logic and Logical Philosophy, 30, 7996.Google Scholar
Colyvan, M. (2008). The ontological commitments of inconsistent theories. Philosophical Studies, 141(1), 115–23.CrossRefGoogle Scholar
Colyvan, M. (2009). Applying inconsistent mathematics. In Bueno, O. and Ø. Linnebo (Eds.) New waves in philosophy of mathematics pp. 160172. London: Palgrave MacMillan.Google Scholar
Colyvan, M. (2012). An introduction to the philosophy of mathematics. Cambridge: Cambridge University Press.Google Scholar
Copeland, B., & Sylvan, R. (1999). Beyond the universal turing machine. Australasian Journal of Philosophy, 77, 4666.CrossRefGoogle Scholar
da Costa, N. C. (1986). On paraconsistent set theory. Logique et Analyse, 29(15), 361.Google Scholar
da Costa, N. C., Krause, D., & Bueno, O. (2007). Paraconsistent logics and paraconsistency. In Jacquette, D. (Ed.), Philosophy of logic (pp. 791912). Amsterdam: North Holland.Google Scholar
da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15, 497510.Google Scholar
Dedekind, R. (1901). Essays on the theory of numbers. New York: Dover (Edited and translated by Beman, W. W., 1901. Includes Stetigkeit und irrationale Zahlen [1872] and Was sind und was sollen die Zahlen? [1888]. Dover ed. 1963).Google Scholar
Denyer, N. (1995). Priest’s paraconsistent arithmetic. Mind, 104, 567575.Google Scholar
D’Ottaviano, I., & Carvalho, T. (2005). Da Costa’s paraconsistent differential calculus and the transference theorem. 2nd Indian International Conference on Artificial Intelligence, 16591678.Google Scholar
Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and “coupled trees.Philosophical Studies, 29, 149168.Google Scholar
Dunn, J. M. (1979). A theorem in 3-valued model theory with connections to number theory, type theory, and relevant logic. Studia Logica, 38, 149169.Google Scholar
Dunn, J. M. (1980). Relevant Robinson’s arithmetic. Studia Logica, 38, 407418.Google Scholar
Estrada-González, L. (2010). Complement-topoi and dual intuitionistic logic. Australasian Journal of Logic, 9, 2644.Google Scholar
Estrada-González, L. (2015). From (paraconsistent) topos logic to universal (topos) logic. In Koslow, A. & Buchsbaum, A. (Eds.), The road to universal logic (pp. 263295). Basel, Switzerland: Birkhauser.CrossRefGoogle Scholar
Estrada-González, L. (2016). Prospects for triviality. In Andreas, H. & Verdée, P. (Eds.), Logical studies of paraconsistent reasoning in science and mathematics (pp. 8190). Cham, Switzerland: Springer.Google Scholar
Ferguson, T. M. (2016). On arithmetic formulated connexively. IfCoLog Journal of Logics and their Applications, 3, 357376.Google Scholar
Ferguson, T. M. (2019). Inconsistent models (and infinite models) for arithmetics with constructible falsity. Logic and Logical Philosophy, 28, 389407.Google Scholar
Forster, T. (1995). Set theory with a universal set. Oxford: Clarendon Press.Google Scholar
Franks, C. (2009). The autonomy of mathematical knowledge. Cambridge: Cambridge University Press.Google Scholar
Friedman, H., & Meyer, R. (1992). Whither relevant arithmetic? Journal of Symbolic Logic, 57, 824831.CrossRefGoogle Scholar
Goldblatt, R. (1998). Lectures on the hyperreals. Berlin: Springer.Google Scholar
Gomes, E., & D’Ottaviano, I. (forthcoming). Illuminating contradictions: A history of paraconsistent logic. Synthese Library, Springer.Google Scholar
Goodship, L. (1996). On dialethism. Australasian Journal of Philosophy, 74(1), 153161.CrossRefGoogle Scholar
Halmos, P. (1974). Naive set theory. New York: Springer.CrossRefGoogle Scholar
Istre, E., & McKubre-Jordens, M. (2019). The difficulties in using weak relevant logics for naive set theory. In Baskent, C. & Ferguson, T. (Eds.), Graham Priest on dialetheism and paraconsistency (pp. 365381). Cham, Switzerland: Springer.Google Scholar
Jacquette, D. (Ed.). (2007). Philosophy of logic. Amsterdam: North Holland.Google Scholar
Jech, T. (2003). Set theory (Third millennium edition, revised and expanded). Berlin: Springer.Google Scholar
Jockwich-Martinez, S., & Venturi, G. (2021). Non-classical models of ZF. Studia Logica, 09, 509–537.Google Scholar
Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.Google Scholar
Leitgeb, H. (2009). On formal and informal provability. In New waves in philosophy of mathematics (pp. 263299). New York: Palgrave Macmillan.CrossRefGoogle Scholar
Libert, T. (2005). Models for paraconsistent set theory. Journal of Applied Logic, 3, 1541.Google Scholar
Lisboa, M. A., & Secco, G. D. (2022). History of logic in Latin America: The case of Ayda Ignez Arruda. British Journal of History of Philosophy, 30(2), 384408.Google Scholar
Löwe, B., & Tarafder, S. (2015). Generalized algebra-valued models of set theory. Review of Symbolic Logic, 8(1), 209225.Google Scholar
Maddy, P. (1992). Indispensability and practice. Journal of Philosophy, 89(6), 275289.Google Scholar
Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers. Review of Symbolic Logic, 2(4), 612646.Google Scholar
Marcos, J. (2005). Logics of formal inconsistency. Brazil: Fundaçäc Biblioteca Nacional.Google Scholar
McKubre-Jordens, M., & Weber, Z. (2012). Real analysis in paraconsistent logic. Journal of Philosophical Logic, 41(5), 901922.CrossRefGoogle Scholar
McKubre-Jordens, M., & Weber, Z. (2016). Paraconsistent measurement of the circle. Australasian Journal of Logic, 14(1), 268280.Google Scholar
Meadows, T., & Weber, Z. (2016). Computation in non-classical foundations? Philosophers’ Imprint, 16, 117.Google Scholar
Meyer, R. K. (1985). Proving semantical completeness “relevantly” for R. Logic Research Paper (23), RSSS, Australian National University.Google Scholar
Meyer, R. K. (1998). ⊃-E is admissible in “true” relevant arithmetic. Journal of Philosophical Logic, 27, 327351.Google Scholar
Meyer, R. K. (2021a). Arithmetic formulated relevantly. Australasian Journal of Logic, 18(5), 154288 (typescript circa 1976).Google Scholar
Meyer, R. K. (2021b). The consistency of arithmetic. Australasian Journal of Logic, 18 (5),289–379 (typescript circa 1976).Google Scholar
Meyer, R. K. (2021c). Relevant arithmetic. Australasian Journal of Logic, 18(5), 150153. (Abstract originally published in the Bulletin of the Section of Logic 1976).Google Scholar
Meyer, R. K., & Mortensen, C. (1984). Inconsistent models for relevant arithmetics. Journal of Symbolic Logic, 49, 917929.CrossRefGoogle Scholar
Meyer, R. K., & Mortensen, C. (1987). Alien intruders in relevant arithmetic. Technical Report, TR-ARP(9/87).Google Scholar
Meyer, R. K., & Restall, G. (1999). “Strenge” arithmetics. Logique et Analyse, 42, 205220.Google Scholar
Meyer, R. K., & Urbas, I. (1986). Conservative extension in relevant arithmetic. Mathematical Logic Quarterly, 32(1–5), 4550.Google Scholar
Moore, G. H. (1982). Zermelo’s axiom of choice. New York: Springer Verlag.Google Scholar
Mortensen, C. (1988). Inconsistent number systems. Notre Dame Journal of Formal Logic, 29, 4560.Google Scholar
Mortensen, C. (1995). Inconsistent mathematics. Dordrecht: Kluwer Academic.Google Scholar
Mortensen, C. (2009). Inconsistent mathematics: Some philosophical implications. In Irvine, A. (Ed.), Handbook of the philosophy of science, volume 9: Philosophy of mathematics (pp. 631649). Amsterdam: North Holland.Google Scholar
Mortensen, C. (2010). Inconsistent geometry. London: College.Google Scholar
Mortensen, C. (2022). The impossible arises. Bloomington: Indiana University Press.Google Scholar
Mortensen, C., & Leishman, S. (2009). Linear algebra representation of Necker cubes I: The crazy crate. Australasian Journal of Logic, 7, 19.Google Scholar
Nelson, D. (1959). Negation and separation of concepts in constructive systems. In Heyting, A. (Ed.), Constructivity in mathematics (pp. 208225). Amsterdam: North Holland.Google Scholar
Øgaard, T. F. (2016). Paths to triviality. Journal of Philosophical Logic, 45(3), 237276.Google Scholar
Omori, H. (2015). Remarks on naive set theory based on LP. Review of Symbolic Logic, 8(2), 279295.Google Scholar
Omori, H., & De, M. (2022). Shrieking, shrugging, and the Australian plan. Notre Dame Journal of Formal Logic, (forthcoming).Google Scholar
Omori, H., & Wansing, H. (2019a). Connexive logics. an overview and current trends. Logic and Logical Philosophy, 28, 371387.Google Scholar
Omori, H., & Wansing, H. (Eds.). (2019b). New essays on Belnap-Dunn logic. Cham, Switzerland: Synthese Library, Springer.Google Scholar
Omori, H., & Weber, Z. (2019). Just true? On the metatheory for paraconsistent truth. Logique et Analyse, 248, 415433.Google Scholar
Paris, J., & Sirokofskich, A. (2008). On LP-models of arithmetic. Journal of Symbolic Logic, 73, 212226.Google Scholar
Potter, M. (2004). Set theory and its philosophy. Oxford: Clarendon.Google Scholar
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219241.Google Scholar
Priest, G. (1994a). Is arithmetic consistent? Mind, 103 (411), 337349.Google Scholar
Priest, G. (1994b). What could the least inconsistent number be? Logique et Analyse, 145, 312.Google Scholar
Priest, G. (1997). Inconsistent models of arithmetic part I: Finite models. Journal of Philosophical Logic, 26, 223235.Google Scholar
Priest, G. (2000). Inconsistent models of arithmetic part II: The general case. Journal of Symbolic Logic, 65, 15191529.Google Scholar
Priest, G. (2005). Towards non-being. Oxford: Oxford University Press.Google Scholar
Priest, G. (2006). In contradiction: A study of the transconsistent (2nd ed.). Oxford: Oxford University Press.Google Scholar
Priest, G. (2008). An introduction to non-classical logic (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Priest, G. (2013). Mathematical pluralism. Journal of the IGPL, 21, 413.Google Scholar
Priest, G. (2014). One. Oxford: Oxford University Press.CrossRefGoogle Scholar
Priest, G. (2017a). A note on the axiom of countability. If CoLog Journal of Logics and their Applications, 4, 1351–1356. (First published in Al-Mukhatabat 2012).Google Scholar
Priest, G. (2017b). What if? The exploration of an idea. Australasian Journal of Logic, 14(1), 55127.Google Scholar
Priest, G. (2019). Some comments and replies. In Baskent, C. & Ferguson, T. (Eds.), Graham Priest on dialetheism andparaconsistency (pp. 575–675). Cham, Switzerland: Springer.Google Scholar
Priest, G. (2021). A note on mathematical pluralism and logical pluralism. Synthese, 198, 49374946.Google Scholar
Priest, G., Routley, R., & Norman, J. (Eds.). (1989). Paraconsistent logic: Essays on the inconsistent. Munich: Philosophia Verlag.Google Scholar
Rayo, A., & Uzquiano, G. (Eds.). (2006). Absolute generality. Oxford: Oxford University Press.Google Scholar
Restall, G. (1992). A note on naїve set theory in LP. Notre Dame Journal of Formal Logic, 33, 422432.Google Scholar
Rosenblatt, L. (2021a). Expressing consistency consistently. Thought, 10(1), 3341.Google Scholar
Rosenblatt, L. (2021b). Towards a non-classical meta-theory for substructural approaches to paradox. Journal of Philosophical Logic, 50, 10071055.Google Scholar
Rosenblatt, L. (2022). Should the non-classical logician be embarassed. Philosopy and Phenomenological Research, 104(2), 388407.Google Scholar
Routley, R. (1977). Ultralogic as universal? (First appeared in two parts in The Relevance Logic Newsletter 2(1), 5190, January 1977 and 2(2), 138–75, May 1977; reprinted as appendix to Exploring Meinong’s Jungle and Beyond 1980, pp. 892962; new edition as The Sylvan Jungle, vol. 4, edited by Weber, Z., Library, Synthese, 2019).Google Scholar
Routley, R. (1979). Dialectical logic, semantics and metamathematics. Erkenntnis, 14, 301331.Google Scholar
Routley, R. (1980a). The choice of logical foundations: Non-classical choices and the ultralogical choice. Studia Logica, 39(1), 7798.Google Scholar
Routley, R. (1980b). Exploring Meinong’s jungle and beyond. Canberra: Philosophy Department, RSSS, Australian National University (Departmental Monograph number 3. Reprinted in four volumes as The Sylvan Jungle, edited by Dominic Hyde et al., Synthese Library, 2019–2020).Google Scholar
Routley, R., & Meyer, R. K. (1976). Dialectical logic, classical logic and the consistency of the world. Studies in Soviet Thought, 16, 125.Google Scholar
Russell, B. (1903). The principles of mathematics. London: George Allen & Unwin.Google Scholar
Russell, G. (2018). Logical nihilism: could there be no logic? Philosophical Issues, 28(1), 308–24.Google Scholar
Schotch, P., Brown, B., & Jennings, R. (Eds.). (2009). On preserving: Essays on preservationism and paraconsistent logic. Toronto: University of Toronto Press.Google Scholar
Shapiro, S. (1998). Incompleteness, mechanism, and optimism. Bulletin of Symbolic Logic, 4, 273302.Google Scholar
Shapiro, S. (2002). Incompleteness and inconsistency. Mind, 111, 817832.Google Scholar
Shapiro, S. (2014). Varieties of logic. Oxford: Oxford University Press.Google Scholar
Shapiro, S., & Wright, C. (2006). All things indefinitely extensible. In Rayo, A. & Uzquiano, G. (Eds.) Absolute generality, (pp. 255304). Oxford: Oxford University Press.Google Scholar
Spivak, M. (1999). A comprehensive introduction to differential geometry (3rd ed., 4 vols.). Berkley: Publish or Perish.Google Scholar
Steinberger, F. (2019). Logical pluralism and logical normativity. Philosopher’s Imprint, 19(12), 119.Google Scholar
Sylvan, R., & Copeland, J. (2000). Computability is logic relative. In D. Hyde & G. Priest (Eds.), Sociative logics and their applications (pp. 189199). Surrey: Ashgate.Google Scholar
Tanswell, F. (2016). Saving proof from paradox: Gödel’s paradox and the inconsistency of informal mathematics. In Andreas, H. & Verdée, P (Eds.), Logical studies of paraconsistent reasoning in science and mathematics (pp. 159174). Cham, Switzerland: Springer.Google Scholar
Tedder, A. (2015). Axioms for finite collapse models of arithmetic. Review of Symbolic Logic, 3, 529539.Google Scholar
Tedder, A. (2021). On consistency and decidability in some paraconsistent arithmetics. Australasian Journal of Logic, 18(5), 473502.Google Scholar
Thomas, M. (2014a). A conjecture about the interpretation of classical mathematics in naive set theory. Presented at the Paraconsistent Reasoning in Science and Mathematics conference, LMU 2014.Google Scholar
Thomas, M. (2014b). Expressive limitations of naive set theory in LP and minimally inconsistent LP. Review of Symbolic Logic, 7(2), 341350.Google Scholar
Thro, E. B. (1983). Distinguishing two classes of impossible objects. Perception, 12, 733751.Google Scholar
van Bendegem, J. P. (2003). Classical arithmetic is quite unnatural. Logic and Logical Philosophy, 11, 231249.Google Scholar
van Benthem, J. (1978). Four paradoxes. Journal of Philosophical Logic, 7(1), 4972.Google Scholar
van Heijenoort, J. (Ed.). (1967). From Frege to Gödel: A source book in mathematical logic, 1879–1931. Cambridge, MA: Harvard University Press.Google Scholar
Verdée, P. (2013a). Non-monotinic set theory as a pragmatic foundation of mathematics. Foundations of Science, 18, 655680.Google Scholar
Verdée, P. (2013b). Strong, universal and provably non-trivial set theory by means of adaptive logic. Logic Journal of the IGPL, 21, 108125.Google Scholar
Warren, J. (2018). Change of logic, change of meaning. Philosophy and Phenomenological Research, 96(2), 421442.Google Scholar
Weber, Z. (2010). Transfinite numbers in paraconsistent set theory. Review of Symbolic Logic, 3(1), 7192.Google Scholar
Weber, Z. (2012). Transfinite cardinals in paraconsistent set theory. Review of Symbolic Logic, 5(2), 269293.Google Scholar
Weber, Z. (2016). Paraconsistent computation and dialetheic machines. In Anreas, H. & Verdée, P. (Eds.), Logical studies of paraconsistent reasoning in science and mathematics (pp. 205223). Cham, Switzerland: Springer.Google Scholar
Weber, Z. (2021). Paradoxes and inconsistent mathematics. Cambridge: Cambridge University Press.Google Scholar
Weber, Z., Badia, G., & Girard, P. (2016). What is an inconsistent truth table? Australasian Journal of Philosophy, 94(3), 533548.Google Scholar
Weber, Z., & Cotnoir, A. (2015). Inconsistent boundaries. Synthese, 192(5), 12671294.Google Scholar
Weir, A. (2004). There are no true contradictions. In Priest, G., Beall, J. C., & Armour-Garb, B. (Eds.), The law of non-contradiction (pp. 385417). Oxford: Clarendon Press.Google Scholar
Whitehead, A. N., & Russell, B. (1910). Principia Mathematica. Cambridge: Cambridge University Press. (in three volumes, 19101913).Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paraconsistency in Mathematics
  • Zach Weber, University of Otago, New Zealand
  • Online ISBN: 9781108993968
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Paraconsistency in Mathematics
  • Zach Weber, University of Otago, New Zealand
  • Online ISBN: 9781108993968
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Paraconsistency in Mathematics
  • Zach Weber, University of Otago, New Zealand
  • Online ISBN: 9781108993968
Available formats
×