Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T13:37:03.787Z Has data issue: false hasContentIssue false

The Iron Speciation Paleoredox Proxy

Published online by Cambridge University Press:  02 February 2021

Simon W. Poulton
Affiliation:
University of Leeds

Summary

In one form or another, iron speciation has had a long history as a paleoredox proxy. The technique has been refined considerably over the years, and the most recent scheme is unique in its potential to distinguish three major oceanic redox states - oxygenated, ferruginous and euxinic. This Element covers the theory behind the proxy, methods involved in applying the technique, and potential complications in interpreting Fe speciation data. A series of case studies are also provided, which highlight how more advanced consideration of the data, often in concert with other techniques, can provide unprecedented insight into the redox state of ancient oceans.
Get access
Type
Element
Information
Online ISBN: 9781108847148
Publisher: Cambridge University Press
Print publication: 04 March 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcott, L. J., Krause, A. J., Hammarlund, E. U. (2020) Development of iron speciation reference materials for paleoredox analysis. Geostandards and Geoanalytical Research, 44, 581–591.Google Scholar
Algeo, T. J., Tribovillard, N. (2009) Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268, 211225.Google Scholar
Algeo, T. J., Li, C. (2020) Redox classification and calibration of redox thresholds in sedimentary systems. Geochimica et Cosmochimica Acta, 287, 8–26.Google Scholar
Anderson, T. F., Raiswell, R. (2004) Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. American Journal of Science, 304, 203233.CrossRefGoogle Scholar
Benkovitz, A., Matthews, A., Teutsch, N., et al. (2020) Tracing water column euxinia in Eastern Mediterranean Sapropels S5 and S7. Chemical Geology, 545, 119627.Google Scholar
Berner, R. A. (1970) Sedimentary pyrite formation. American Journal of Science, 268, 123.Google Scholar
Berner, R. A. (1984) Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48, 605615.Google Scholar
Bowyer, F. T., Shore, A. J., Wood, R. A., et al. (2020) Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group, Namibia. Scientific Reports, 10, 2240.Google Scholar
Canfield, D. E. (1989) Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 53, 619632.CrossRefGoogle ScholarPubMed
Canfield, D. E., Raiswell, R., Westrich, J. T., et al. (1986). The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54, 149155.CrossRefGoogle Scholar
Canfield, D. E., Raiswell, R., Bottrell, S. H. (1992) The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292, 659683.Google Scholar
Canfield, D. E., Lyons, T. W., Raiswell, R. (1996). A model for iron deposition to euxinic Black Sea sediments. American Journal of Science, 296, 818834.Google Scholar
Canfield, D. E., Poulton, S. W., Knoll, A. H., et al. (2008) Ferruginous conditions dominated Later Neoproterozoic deep-water chemistry. Science, 321, 949952.Google Scholar
Chen, X., Li, M., Sperling, E. A., et al. (2020) Mesoproterozoic paleo-redox changes during 1500–1400 Ma in the Yanshan Basin, North China. Precambrian Research, 347, 105835.Google Scholar
Clarkson, M. O., Poulton, S. W., Guilbaud, R., et al. (2014) Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chemical Geology, 382, 111122.CrossRefGoogle Scholar
Crowe, S. A., Jones, C., Katsev, S., et al. (2008) Photoferrotrophs thrive in an Archean ocean analogue. PNAS, 105, 15, 938–915,943.Google Scholar
Dahl, T. W., Siggaard-Andersen, M.-L., Schovsbo, N. H., et al. (2019) Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox. Scientific Reports, 9, 11669.Google Scholar
Derry, L. A., Jacobsen, S. B. (1990) The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 54, 29652977.Google Scholar
Doyle, K. A., Poulton, S. W., Newton, R. J., et al. (2018) Shallow water anoxia in the Mesoproterozoic ocean: Evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Research, 317, 196210.Google Scholar
Farquhar, J., Cliff, J., Zerkle, A. L., et al. (2013) Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. PNAS, 110, 1763817643.CrossRefGoogle ScholarPubMed
Gill, B. C., Lyons, T. W., Young, S. A., et al. (2011) Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469, 8083.Google Scholar
Guilbaud, R., Poulton, S. W., Butterfield, N. J., et al. (2015) A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8, 466470.Google Scholar
Guilbaud, R., Poulton, S. W., Thompson, J., et al. (2020) Widespread oligotrophic conditions in the early Neoproterozoic ocean. Nature Geoscience, 13, 296301.CrossRefGoogle Scholar
Halevy, I., Alesker, M., Schuster, E. M., et al. (2017) A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10, 135139.Google Scholar
Hepburn, L. E., Butler, I. B., Boyce, A., et al. (2020) The use of operationally-defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from Mössbauer spectroscopy. Chemical Geology, 543, 119584.Google Scholar
Jiang, C. Z., Tosca, N. J. (2019) Fe (II)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater. Earth and Planetary Science Letters, 506, 231242.CrossRefGoogle Scholar
Johnston, D. T., Poulton, S. W., Dehler, C., et al. (2010) An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290, 6473.CrossRefGoogle Scholar
Kendall, B., Reinhard, C. T., Lyons, T. W., et al. (2010) Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3, 647652.Google Scholar
Kendall, B., Gordon, G. W., Poulton, S. W., et al. (2011) Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia, Earth and Planetary Science Letters, 307, 450460.Google Scholar
Konhauser, K. O., Hamade, T., Raiswell, R., et al. (2002) Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 10791082.Google Scholar
Laufer, K., Michaud, A. B., Røy, H., et al. (2020) Reactivity of iron minerals in the seabed toward microbial reduction – a comparison of different extraction techniques. Geomicrobiology Journal, 37, 170189.CrossRefGoogle Scholar
Li, Y.-L., Konhauser, K. O., Zhai, M. (2017) The formation of primary magnetite in the early Archean oceans. Earth and Planetary Science Letters, 466, 103114.Google Scholar
Lyons, T. W., Severmann, S. (2006) A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70, 56985722.Google Scholar
Lyons, T. W., Werne, J. P., Hollander, D. J., et al. (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology, 195, 131157.Google Scholar
März, C., Poulton, S. W., Beckmann, B., et al. (2008), Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta, 72, 37033717.Google Scholar
Milliman, J. D., Meade, R. H. (1983) World-wide delivery of river sediment to the oceans. Journal of Geology, 91, 121.Google Scholar
Planavsky, N. J., McGoldrick, P., Scott, C. T., et al. (2011) Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477, 448451.Google Scholar
Poulton, S. W., Canfield, D. E. (2005) Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214, 209221.Google Scholar
Poulton, S. W., Canfield, D. E. (2011) Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements, 7, 107112.Google Scholar
Poulton, S. W., Raiswell, R. (2002) The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. American Journal of Science, 302, 774805.Google Scholar
Poulton, S. W., Krom, M. D., Raiswell, R. (2004a) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta, 68, 37033715.Google Scholar
Poulton, S. W., Fralick, P. W., Canfield, D. E. (2004b) The transition to a sulphidic ocean ~1.84 billion years ago. Nature, 431, 173177.Google Scholar
Poulton, S. W., Fralick, P. W., Canfield, D. E. (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience, 3, 486490.Google Scholar
Raiswell, R., Al-Biatty, H. J. (1989) Depositional and diagenetic C-S-Fe signatures in early Paleozoic normal marine shales. Geochimica et Cosmochimica Acta, 53, 11471152.Google Scholar
Raiswell, R., Anderson, T. F. (2005) Reactive iron enrichment in sediments deposited beneath euxinic bottom waters: Constraints on supply by shelf recycling. In: McDonald, I., Boyce, A. J. , Butler, I. B. , et al. (eds.), Mineral Deposits and Earth Evolution, Geological Society Special Publication 248, pp. 179194.Google Scholar
Raiswell, R., Canfield, D. E. (1996) Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochimica et Cosmochimica Acta, 60, 27772787.Google Scholar
Raiswell, R., Canfield, D. E. (1998) Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298, 219245.Google Scholar
Raiswell, R., Canfield, D. E. (2012) The iron biogeochemical cycle past and present. Geochemical Perspectives, 1, 1232.Google Scholar
Raiswell, R., Buckley, F., Berner, R. A., et al. (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Research, 58, 812819.Google Scholar
Raiswell, R., Canfield, D. E., Berner, R. A. (1994) A comparison of iron extraction methods for the determination of degree of pyritization and the recognition of iron-limited pyrite formation. Chemical Geology, 111, 101110.Google Scholar
Raiswell, R., Newton, R. J., Wignall, P. B. (2001) An indicator of water column anoxia: Resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, U.K.). Journal of Sedimentary Research, 71, 286294.Google Scholar
Raiswell, R., Hardisty, D., Lyons, T. W., et al. (2018) The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. American Journal of Science, 318, 491526.Google Scholar
Rasmussen, B., Krapez, B., Muhling, J. R., et al. (2015) Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology, 43, 303306.Google Scholar
Rickard, D. (2019) Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 522, 6275.Google Scholar
Schrӧder, S., Lacassie, J. P., Beukes, N. J. (2006) Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Africa). South African Journal of Geology, 109, 2354.Google Scholar
Slotznick, S. P., Sperling, E. A., Tosca, N. J., et al. (2020) Unraveling the mineralogical complexity of sediment iron speciation using sequential extractions. Geochemistry, Geophysics, Geosystems, 21, e2019GC008666.Google Scholar
Sperling, E. A., Carbone, C., Strauss, J. V., et al. (2016) Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada. Geological Society of America, Bulletin, 128, 558575.Google Scholar
Stookey, L. L. (1970) Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779781.Google Scholar
Tostevin, R., Wood, R. A., Shields, G. A., et al. (2016) Low-oxygen waters limited habitable space for early animals. Nature Communications, 7, 12818.Google Scholar
Wignall, P. B., Newton, R. J. (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298, 537552.Google Scholar
Wilkin, R. T., Barnes, H. L. (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61, 323339.Google Scholar
Wood, R. A., Poulton, S. W., Prave, A. R., et al. (2015) Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Research, 261, 252271.Google Scholar
Xiong, Y., Guilbaud, R., Peacock, C. L., et al. (2019) Phosphorus cycling in Lake Cadagno, Switzerland: A low sulfate euxinic ocean analogue. Geochimica et Cosmochimica Acta, 251, 116135.Google Scholar
Zegeye, A., Bonneville, S., Benning, L. G., et al. (2012) Green rust formation controls nutrient availability in a ferruginous water column. Geology, 40, 599602.Google Scholar
Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., et al. (2012) A bistable organic-rich atmosphere on the Neoarchaean Earth. Nature Geoscience, 5, 359363.Google Scholar
Zhang, K., Zhu, X., Wood, R. A., et al. (2018) Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geoscience, 11, 345350.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Iron Speciation Paleoredox Proxy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Iron Speciation Paleoredox Proxy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Iron Speciation Paleoredox Proxy
Available formats
×