Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:50:30.025Z Has data issue: false hasContentIssue false

The Breadth of Visual Attention

Published online by Cambridge University Press:  25 May 2020

Stephanie C. Goodhew
Affiliation:
Australian National University, Canberra

Summary

Humans can focus their attention narrowly (e.g., to read this text) or broadly (e.g., to determine which way a large crowd of people are moving). This Element comprehensively considers attentional breadth. Section 1 introduces the concept of attentional breadth, while Section 2 considers measures of attentional breadth. In particular, this section provides a critical discussion of the types of psychometric evidence which should be sought to establish the validity of measures of attentional breadth and reviews the available evidence through this lens. Section 3 considers the visual task performance consequences of attentional breadth, including prescribing several key methodological criteria that studies that manipulate attentional breadth need to meet, as well as a discussion of relevant theories and avenues for future theoretical development. Section 4 discusses the utility of the exogenous–endogenous distinction from covert shifts of attention for understanding the performance consequences of attentional breadth. Finally, Section 5 provides concluding remarks.
Get access
Type
Element
Information
Online ISBN: 9781108854702
Publisher: Cambridge University Press
Print publication: 18 June 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, L., & de Fockert, J. W. (2012). Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention. Plos One, 7(8), e43101. doi:10.1371/journal.pone.0043101CrossRefGoogle ScholarPubMed
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–43. doi:10.1016/j.tics.2012.06.010Google Scholar
Badcock, J. C., Whitworth, F. A., Badcock, D. R., & Lovegrove, W. J. (1990). Low-frequency filtering and the processing of local-global stimuli. Perception, 19(5), 617–29. doi:10.1068/p190617Google Scholar
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63 (1), 129. doi:10.1146/annurev-psych-120710-100422Google Scholar
Baddeley, A., & Hitch, G. J. (1974). Working memory. In Bower, G. A. ed., The Psychology of Learning and Motivation, 8, 4789: New York: Academic Press.Google Scholar
Ball, K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. Journal of the Optical Society of America, A, Optics, Image Science & Vision, 5(12), 2210–19.CrossRefGoogle ScholarPubMed
Ball, K., Owsley, C., Sloane, M. E., Roenker, D. L., & Bruni, J. R. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Opthalmology & Visual Sciences, 34(11), 3110–23.Google Scholar
Balz, G. W., & Hock, H. S. (1997). The effect of attentional spread on spatial resolution. Vision Research, 37(11), 1499–510. doi:10.1016/S0042-6989(96)00296-9Google Scholar
Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmidt, A. M., Dale, A. M.,… Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103(2), 449–54. doi:10.1073/pnas.0507062103Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 124. doi:10.1037/0033-2909.133.1.1CrossRefGoogle ScholarPubMed
Baruch, O., & Yeshurun, Y. (2014). Attentional attraction of receptive fields can explain spatial and temporal effects of attention. Visual Cognition, 22(5), 704–36. doi:10.1080/13506285.2014.911235CrossRefGoogle Scholar
Basso, M. R., Schefft, B. K., Ris, M. D., & Dember, W. N. (1996). Mood and global-local visual processing. Journal of the International Neuropsychological Society, 2(3), 249–55. doi:10.1017/S1355617700001193CrossRefGoogle ScholarPubMed
Baumann, N., & Kuhl, J. (2005). Positive Affect and Flexibility: Overcoming the Precedence of Global over Local Processing of Visual Information. Motivation and Emotion, 29(2), 123–34. doi:10.1007/s11031-005-7957-1Google Scholar
Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., & Minshew, N. (2006). Configural processing in autism and its relationship to face processing. Neuropsychologia, 44(1), 110–29. doi:10.1016/j.neuropsychologia.2005.04.002CrossRefGoogle ScholarPubMed
Belopolsky, A. V., Zwaan, L., Theeuwes, J., & Kramer, A. F. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14(5), 934–8. doi:10.3758/bf03194124CrossRefGoogle ScholarPubMed
Bennett, P. J., & Pratt, J. (2001). The spatial distribution of inhibition of return. Psychological Science, 12(1), 7680. doi:10.1111/1467-9280.00313Google Scholar
Benso, F., Turatto, B., & Gastone, G. (1998). The time course of attentional focusing. European Journal of Cognitive Psychology, 10(4), 373–88. doi:10.1080/713752283Google Scholar
Biggs, A. T., & Gibson, B. S. (2018). Opening the window: Size of the attentional window dominates perceptual load and familiarity in visual selection. Journal of Experimental Psychology: Human Perception & Performance, 44(11), 1780–98. doi:10.1037/xhp0000565Google ScholarPubMed
Bleckley, M. K., Durso, F. T., Crutchfield, J. M., Engle, R. W., & Khanna, M. M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin & Review, 10(4), 884–9. doi:10.3758/BF03196548Google Scholar
Bocanegra, B. R., & Zeelenberg, R. (2011). Emotion-induced trade-offs in spatiotemporal vision. Journal of Experimental Psychology: General, 140(2), 272–82. doi:10.1037/a0023188Google Scholar
Brown, T. A., Chorpita, B. F., Korotitsch, W., & Barlow, D. H. (1997). Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behav Res Ther, 35(1), 7989. doi:10.1016/S0005-7967(96)00068-XGoogle Scholar
Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychologica Belgica, 51(1), 513. doi:10.5334/pb-51-1-5CrossRefGoogle Scholar
Buetti, S., Lleras, A., & Moore, C. M. (2014). The flanker effect does not reflect the processing of “task-irrelevant” stimuli: evidence from inattentional blindness. Psychonomic Bulletin & Review, 21(5), 1231–37. doi:10.3758/s13423-014-0602-9Google Scholar
Bulakowski, P. F., Bressler, D. W., & Whitney, D. (2007). Shared attentional resources for global and local motion processing. Journal of Vision, 7(10), 110 doi:10.1167/7.10.10Google Scholar
Burr, D. C., Concetta Morrone, M., & Vaina, L. M. (1998). Large receptive fields for optic flow detection in humans. Vision Research, 38(12), 1731–43. doi:10.1016/S0042-6989(97)00346-5Google Scholar
Bush, W. S., & Vecera, S. P. (2014). Differential effect of one versus two hands on visual processing. Cognition, 133(1), 232–7. doi:10.1016/j.cognition.2014.06.014Google Scholar
Calcott, R. D., & Berkman, E. T. (2014). Attentional Flexibility During Approach and Avoidance Motivational States: The Role of Context in Shifts of Attentional Breadth. Journal of Experimental Psychology: General, 143(3), 1393–408. doi:10.1037/a0035060Google Scholar
Caparos, S., & Linnell, K. J. (2010). The spatial focus of attention is controlled at perceptual and cognitive levels. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1080–107. doi:10.1037/a0020367Google Scholar
Caparos, S., Linnell, K. J., Bremner, A. J., de Fockert, J. W., & Davidoff, J. (2013). Do local and global perceptual biases tell us anything about local and global selective attention? Psychological Science, 24(2), 206–12. doi:10.1177/0956797612452569Google Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–525. doi:10.1016/j.visres.2011.04.012Google Scholar
Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73(3), 195209. doi:10.1016/0001-6918(90)90022-8Google Scholar
Chica, A. B., Bartolomeo, P., & Lupianez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107–23. doi:10.1016/j.bbr.2012.09.027Google Scholar
Chica, A. B., & Christie, J. (2009). Spatial attention does improve temporal discrimination. Attention, Perception, & Psychophysics, 71(2), 273–80. doi:10.3758/APP.71.2.273Google Scholar
Chong, S. C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 67(1), 113. doi:10.3758/bf03195009Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–15. doi:10.1038/nrn755Google Scholar
Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–99. doi:10.1146/annurev-neuro-061010-113731Google Scholar
Coren, S., Ward, L. M., & Enns, J. T. (2004). Sensation and Perception: New York: J. Wiley & Sons.Google Scholar
Cosman, J. D., Lees, M. N., Lee, J. D., Rizzo, M., & Vecera, S. P. (2012). Impaired attentional disengagement in older adults with useful field of view decline. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 67(4), 405–12. doi:10.1093/geronb/gbr116CrossRefGoogle ScholarPubMed
Cox, J. A., Christensen, B. K., & Goodhew, S. C. (2018). Temporal dynamics of anxiety-related attentional bias: Is affective context a missing piece of the puzzle? Cognition & emotion, 32(6), 1329–38. doi:10.1080/02699931.2017.1386619CrossRefGoogle ScholarPubMed
Cutzu, F., & Tsotsos, J. K. (2003). The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 43(2), 205–19. doi:10.1016/s0042-6989(02)00491-1CrossRefGoogle ScholarPubMed
Dale, G., & Arnell, K. M. (2013). Investigating the stability of and relationships among global/local processing measures. Attention, Perception & Psychophysics, 75(3), 394406. doi:10.3758/s13414-012-0416-7Google Scholar
Dale, G., & Arnell, K. M. (2015). Multiple measures of dispositional global/local bias predict attentional blink magnitude. Psychological Research, 79(4), 534–47. doi:10.1007/s00426-014-0591-3CrossRefGoogle ScholarPubMed
Delchau, H. L., Christensen, B. K., O’Kearney, R., & Goodhew, S. C. (2019). What is top-down about seeing enemies? Social anxiety and attention to threat. Attention, Perception, & Psychophysics. doi:10.3758/s13414-019-01920-3Google Scholar
Dell’Acqua, R., Dux, P. E., Wyble, B., Doro, M., Sessa, P., Meconi, F., & Jolicoeur, P. (2015). The attentional blink impairs detection and delays encoding of visual information: evidence from human electrophysiology. Journal of Cognitive Neuroscience, 27(4), 720–35. doi:10.1162/jocn_a_00752Google Scholar
Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A., & Silver, M. A. (2014). Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage, 2, 358–69. doi:10.1016/j.neuroimage.2014.07.019Google Scholar
Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in the lateral geniculate nucleus of the macaque. Journal of Physiology, 357, 219–40.Google Scholar
Downing, C. J. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 188202. doi:10.1037/0096-1523.14.2.188Google Scholar
Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T., & Valdes, E. G. (2018). Systematic review and meta-analyses of useful field of view cognitive training. Neuroscience & Biobehavioral Reviews, 84, 7291. doi:10.1016/j.neubiorev.2017.11.004Google Scholar
Enns, J. T., & Akhtar, N. (1989). A developmental study of filtering in visual attention. Child Dev, 60(5), 1188–99. doi:10.2307/1130792CrossRefGoogle ScholarPubMed
Enns, J. T., & Girgus, J. S. (1985). Developmental changes in selective and integrative visual attention. Journal of Experimental Child Psychology, 40(2), 319–37. doi:10.1016/0022-0965(85)90093-1CrossRefGoogle ScholarPubMed
Enns, J. T., & Kingstone, A. (1995). Access to Global and Local Properties in Visual Search for Compound Stimuli. Psychological Science, 6(5), 283–91. doi:10.1111/j.1467-9280.1995.tb00512.xGoogle Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–9. doi:10.3758/bf03203267Google Scholar
Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225–40. doi:10.3758/BF03211502CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–9. doi:10.1016/j.neuroimage.2005.02.004Google Scholar
Fang, L., Hoorelbeke, K., Bruyneel, L., Notebaert, L., MacLeod, C., De Raedt, R., & Koster, E. H. (2017). Can training change attentional breadth? Failure to find transfer effects. Psychological Research, 82(3), 520–34. doi:10.1007/s00426-017-0845-yGoogle ScholarPubMed
Fang, L., Sanchez-Lopez, A., & Koster, E. H. W. (2018). Attentional scope, rumination, and processing of emotional information: An eye-tracking study. Emotion, 19 (7), 1257–67. doi:10.1037/emo0000516Google Scholar
Fenske, M. J., & Eastwood, J. D. (2003). Modulation of focused attention by faces expressing emotion: evidence from flanker tasks. Emotion, 3(4), 327–43. doi:10.1037/1528-3542.3.4.327Google Scholar
Ferrera, V. P., Nealey, T. A., & Maunsell, J. R. (1992). Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature, 358, 756–8. doi:10.1038/358756a0CrossRefGoogle ScholarPubMed
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030–44. doi:10.1037/0096-1523.18.4.1030Google Scholar
Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion, 19(3), 313–32. doi:10.1080/02699930441000238Google Scholar
Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19(5), 476–82. doi:10.1111/j.1467-9280.2008.02112.xGoogle Scholar
Gable, P. A., & Harmon-Jones, E. (2010a). The blues broaden, but the nasty narrows: attentional consequences of negative affects low and high in motivational intensity. Psychological Science, 21(2), 211–15. doi:10.1177/0956797609359622CrossRefGoogle ScholarPubMed
Gable, P. A., & Harmon-Jones, E. (2010b). The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information. Emotion, 10(4), 599603. doi:10.1037/a0018426Google Scholar
Gable, P. A., & Harmon-Jones, E. (2011). Attentional states influence early neural responses associated with motivational processes: local vs. global attentional scope and N1 amplitude to appetitive stimuli. Biological Psychology, 87(2), 303–5. doi:10.1016/j.biopsycho.2011.02.007Google Scholar
Gable, P. A., & Harmon-Jones, E. (2012). Reducing attentional capture of emotion by broadening attention: increased global attention reduces early electrophysiological responses to negative stimuli. Biological Psychology, 90(2), 150–3. doi:10.1016/j.biopsycho.2012.02.006CrossRefGoogle ScholarPubMed
Gao, Z., Flevaris, A. V., Robertson, L. C., & Bentin, S. (2011). Priming global and local processing of composite faces: revisiting the processing-bias effect on face perception. Attention, Perception & Psychophysics, 73(5), 1477–86. doi:10.3758/s13414-011-0109-7Google Scholar
Gasper, K., & Clore, G. L. (2002). Attending to the big picture: mood and global versus local processing of visual information. Psychological Science, 13(1), 3440. doi:10.1111/1467-9280.00406Google Scholar
Gerlach, C., & Starrfelt, R. (2018). Global precedence effects account for individual differences in both face and object recognition performance. Psychonomic Bulletin & Review, 25(4), 1365–72. doi:10.3758/s13423-018-1458-1Google Scholar
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–5. doi:10.1016/0166-2236(92)90344-8CrossRefGoogle ScholarPubMed
Goodhew, S. C. (2017). What have we learned from two decades of object-substitution masking? Time to update: Object individuation prevails over substitution. Journal of Experimental Psychology: Human Perception and Performance, 43(6), 1249–62. doi:10.1037/xhp0000395Google Scholar
Goodhew, S. C., & Clarke, R. (2016). Contributions of parvocellular and magnocellular pathways to visual perception near the hands are not fixed, but can be dynamically altered. Psychonomic Bulletin & Review, 23(1), 156–62. doi:10.3758/s13423-015-0844-1Google Scholar
Goodhew, S. C., Dawel, A., & Edwards, M. (2020). Standardizing measurement in psychological studies: On why one second has different value in a sprint versus a marathon. Behavior Research Methods. doi:10.3758/s13428-020-01383-7Google Scholar
Goodhew, S. C., & Edwards, M. (2016). Object individuation is invariant to attentional diffusion: Changes in the size of the attended region do not interact with object-substitution masking. Cognition, 157, 358–64. doi:10.1016/j.cognition.2016.10.006Google Scholar
Goodhew, S. C., & Edwards, M. (2019). Translating experimental paradigms into individual-differences research: Contributions, challenges, and practical recommendations. Consciousness and Cognition, 69, 1425. doi:10.1016/j.concog.2019.01.008Google Scholar
Goodhew, S. C., Edwards, M., Ferber, S., & Pratt, J. (2015). Altered visual perception near the hands: A critical review of attentional and neurophysiological models. Neuroscience & Biobehavioral Reviews, 55, 223–33. doi:10.1016/j.neubiorev.2015.05.006Google Scholar
Goodhew, S. C., Lawrence, R. K., & Edwards, M. (2017). Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception. Attention, Perception & Psychophysics, 79(4), 1147–64. doi:10.3758/s13414-017-1306-9Google Scholar
Goodhew, S. C., & Plummer, A. S. (2019). Flexibility in resizing attentional breadth: Asymmetrical versus symmetrical attentional contraction and expansion costs depends on context. Quarterly Journal of Experimental Psychology, 72(10), 2527–40. doi:10.1177/1747021819846831Google Scholar
Goodhew, S. C., Shen, E., & Edwards, M. (2016). Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception. Psychonomic Bulletin & Review, 23(4), 1144–9. doi:10.3758/s13423-015-0904-6Google Scholar
Gozli, D. G., West, G. L., & Pratt, J. (2012). Hand position alters vision by biasing processing through different visual pathways. Cognition, 124(2), 244–50. doi:10.1016/j.cognition.2012.04.008CrossRefGoogle ScholarPubMed
Greene, M. R., & Oliva, A. (2009). The briefest of glances: The time course of natural scene understanding. Psychological Science, 20(4), 464–72. doi:10.1111/j.1467-9280.2009.02316.xGoogle Scholar
Greenwood, P., & Parasuraman, R. (1999). Scale of attentional focus in visual search. Perception & Psychophysics, 61(5), 837–59. doi:10.3758/BF03206901Google Scholar
Greenwood, P., & Parasuraman, R. (2004). The scaling of spatial attention in visual search and its modification in healthy aging. Perception & Psychophysics, 66(1), 322. doi:10.3758/BF03194857Google Scholar
Gu, L., Yang, X., Li, L. M. W., Zhou, X., & Gao, D. G. (2017). Seeing the big picture: Broadening attention relieves sadness and depressed mood. Scandinavian Journal of Psychology, 58(4), 324–32. doi:10.1111/sjop.12376Google Scholar
Hanif, A., Ferrey, A. E., Frischen, A., Pozzobon, K., Eastwood, J. D., Smilek, D., & Fenske, M. J. (2012). Manipulations of attention enhance self-regulation. Acta Psychologica, 139(1), 104–10. doi:10.1016/j.actpsy.2011.09.010Google Scholar
Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–86. doi:10.3758/s13428-017-0935-1Google Scholar
Hein, E., Rolke, B., & Ulrich, R. (2006). Visual attention and temporal discrimination: Differential effects of automatic and voluntary cueing. Visual Cognition, 13(1), 2950. doi:10.1080/13506280500143524Google Scholar
Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: individual differences in visual attention control. Journal of Experimental Psychology: General, 136(2), 217–40. doi:10.1037/0096-3445.136.2.217Google Scholar
Hoar, S., & Linnell, K. J. (2013). Cognitive load eliminates the global perceptual bias for unlimited exposure durations. Attention, Perception, & Psychophysics, 75(2), 210–15. doi:10.3758/s13414-012-0421-xGoogle Scholar
Hock, H. S., Park, C. L., & Schoner, G. (2002). Self-organized pattern formation: experimental dissection of motion detection and motion integration by variation of attentional spread. Vision Research, 42(8), 9911003. doi:10.1016/S0042-6989(02)00026-3Google Scholar
Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J.-H., & Welsh, T. N. (2019). No one knows what attention is. Attention, Perception, & Psychophysics, 81(7), 2288–303. doi:10.3758/s13414-019-01846-wCrossRefGoogle ScholarPubMed
Hotton, M., Derakshan, N., & Fox, E. (2018). A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers. Behav Res Ther, 100, 6777. doi:10.1016/j.brat.2017.10.011Google Scholar
Hubner, R. (2000). Attention shifting between global and local target levels: The persistence of level-repetition effects. Visual Cognition, 7(4), 465–84. doi:10.1080/135062800394612Google Scholar
Huttermann, S., Bock, O., & Memmert, D. (2012). The breadth of attention in old age. Ageing Research, 3(1), 6770. doi:doi.org/10.4081/ar.2012.e10Google Scholar
Huttermann, S., & Memmert, D. (2015). The influence of motivational and mood states on visual attention: A quantification of systematic differences and casual changes in subjects’ focus of attention. Cognition & emotion, 29(3), 471–83. doi:10.1080/02699931.2014.920767Google Scholar
Huttermann, S., & Memmert, D. (2018). Effects of lab- and field-based attentional training on athletes’ attention-window. Psychology of Sport and Exercise, 38, 1727. doi:10.1016/j.psychsport.2018.05.009CrossRefGoogle Scholar
Huttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional “spotlight” varies with differences in sports expertise. Journal of Experimental Psychology: Applied, 20(2), 147–57. doi:10.1037/xap0000012Google Scholar
Iacoviello, B. M., Wu, G., Abend, R., Murrough, J. W., Feder, A., Fruchter, E.,… Charney, D. S. (2014). Attention bias variability and symptoms of posttraumatic stress disorder. J Trauma Stress, 27(2), 232–9. doi:10.1002/jts.21899Google Scholar
Jefferies, L. N., & Di Lollo, V. (2015). When can spatial attention be deployed in the form of an annulus? Attention, Perception, & Psychophysics, 77(2), 413–22. doi:10.3758/s13414-014-0790-4Google Scholar
Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In Long, J. B. & Baddeley, A. D., eds., Attention and Performance IX. Hillsdale, New Jersey: Lawrence Erlbaum Associates. 187203Google Scholar
Kadel, H., Feldmann-Wustefeld, T., & Schubo, A. (2017). Selection history alters attentional filter settings persistently and beyond top-down control. Psychophysiology, 54(5), 736–54. doi:10.1111/psyp.12830Google Scholar
Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. Journal of Experimental Psychology: Human Perception and Performance, 8(4), 521–35. doi:10.1037//0096-1523.8.4.521Google Scholar
Kinchla, R. A., & Wolfe, J. M. (1979). The order of visual processing: “Top-down,” “bottom-up,” or “middle-out”. Perception & Psychophysics, 25(3), 225–31. doi:10.3758/bf03202991Google Scholar
Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–47. doi:10.1016/S1364-6613(00)01452-2Google Scholar
Koldewyn, K., Jiang, Y., Weigelt, S., & Kanwisher, N. (2013). Global/Local Processing in Autism: Not a Disability, but a Disinclination. Journal of autism and developmental disorders, 43(10), 2329–40. doi:10.1007/s10803-013-1777-zGoogle Scholar
Kosslyn, S. M., Brown, H. D., & Dror, I. E. (1999). Aging and the scope of visual attention. Gerontology, 45(2), 102–9. doi:10.1159/000022071Google Scholar
Koster, E. H., Crombez, G., Verschuere, B., Van Damme, S., & Wiersema, J. R. (2006). Components of attentional bias to threat in high trait anxiety: Facilitated engagement, impaired disengagement, and attentional avoidance. Behav Res Ther, 44(12), 1757–71. doi:10.1016/j.brat.2005.12.011Google Scholar
Kramer, J. H., Ellenberg, L., Leonard, J., & Share, L. J. (1996). Developmental sex differences in global-local perceptual bias. Neuropsychology, 10(3), 402–7. doi:10.1037/0894-4105.10.3.402Google Scholar
Kreitz, C., Furley, P., Memmert, D., & Simons, D. J. (2015). Working-memory performance is related to spatial breadth of attention. Psychological Research, 79(6), 1034–41. doi:10.1007/s00426-014-0633-xGoogle Scholar
LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 371–9. doi:10.1037/0096-1523.9.3.371Google Scholar
Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451–68. doi:10.1037/0096-1523.21.3.451Google ScholarPubMed
Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 7582. doi:10.1016/j.tics.2004.12.004Google Scholar
Lawrence, R. K., Edwards, M., Chan, G. W. C., Cox, J. A., & Goodhew, S. C. (2019). Does cultural background predict the spatial distribution of attention? Culture and Brain. doi:10.1007/s40167-019-00086-xGoogle Scholar
Lawrence, R. K., Edwards, M., & Goodhew, S. C. (2018). Changes in the spatial spread of attention with ageing. Acta Psychologica, 188, 188–99. doi:10.1016/j.actpsy.2018.06.009Google Scholar
Lawrence, R. K., Edwards, M., & Goodhew, S. C. (2020). The impact of scaling rather than shaping attention: Changes in the scale of attention using global motion inducers influence both spatial and temporal acuity. Journal of Experimental Psychology: Human Perception and Performance, 46(3) 313–23.doi:10.1037/xhp0000708Google Scholar
Lawrence, R. K., Edwards, M. E., Talipski, L. A., & Goodhew, S. C. (2020). A critical review of the cognitive and perceptual factors influencing attentional scaling and visual processing. Psychonomic Bulletin and Review. doi:10.3758/s13423-019-01692-9CrossRefGoogle Scholar
Leber, A. B., & Irons, J. L. (2019). A methodological toolbox for investigating attentional strategy. Current Opinion in Psychology, 29, 274–81. doi:10.1016/j.copsyc.2019.08.008Google Scholar
Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–9. doi:10.1126/science.3283936Google Scholar
Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther, 33(3), 335–43. doi:10.1016/0005-7967(94)00075-UGoogle Scholar
MacLeod, C., & Clarke, P. J. F. (2015). The Attentional Bias Modification Approach to Anxiety Intervention. Clinical Psychological Science, 3(1), 5878. doi:10.1177/2167702614560749Google Scholar
MacLeod, C., Grafton, B., & Notebaert, L. (2019). Anxiety-Linked Attentional Bias: Is It Reliable? Annu Rev Clin Psychol, 15(1), 529–54. doi:10.1146/annurev-clinpsy-050718-095505Google Scholar
MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95(1), 1520. doi:10.1037//0021-843x.95.1.15Google Scholar
Macrae, C. N., & Lewis, H. L. (2002). Do I know you? Processing orientation and face recognition. Psychological Science, 13(2), 194–6. doi:10.1111/1467-9280.00436Google Scholar
McKone, E., Davies, A. A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne, T., & Platow, M. J. (2010). Asia has the global advantage: Race and visual attention. Vision Research, 50(16), 1540–9. doi:10.1016/j.visres.2010.05.010Google Scholar
Milne, E., & Szczerbinski, M. (2009). Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation. Advances in Cognitive Psychology, 5, 126. doi:10.2478/v10053-008-0062-8Google Scholar
Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6(10), 414–17. doi:10.1016/0166-2236(88)2990190-XGoogle Scholar
Moriya, J. (2018). Attentional networks and visuospatial working memory capacity in social anxiety. Cognition and Emotion, 32(1), 158–66. doi:10.1080/02699931.2016.1263601Google Scholar
Most, S. B., Chun, M. M., Widders, D. M., & Zald, D. H. (2005). Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Psychonomic Bulletin & Review, 12(4), 654–61. doi:10.3758/BF03196754Google Scholar
Most, S. B., Smith, S. D., Cooter, A. B., Levy, B. N., & Zald, D. H. (2007). The naked truth: Positive, arousing distractors impair rapid target perception. Cognition and Emotion, 21, 964–81. doi:10.1080/02699930600959340Google Scholar
Mounts, J. R. W. (2000a). Attentional capture by abrupt onsets and feature singletons produces inhibitory surrounds. Perception & Psychophysics, 62(7), 1485–93. doi:10.3758/bf03212148Google Scholar
Mounts, J. R. W. (2000b). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62(5), 969–83. doi:10.3758/bf03212082Google Scholar
Mounts, J. R. W., & Edwards, A. A. (2016). Attentional breadth and trade-offs in spatial and temporal acuity. Visual Cognition, 24(7–8), 422–33. doi:10.1080/13506285.2017.1294637Google Scholar
Muller, M., Malinowski, P., Gruber, T., & Hillyard, S. (2003). Sustained division of the attentional spotlight. Nature, 424(6946), 309–12. doi:10.1038/nature01812Google Scholar
Muller, N. G., Bartelt, O. A., Donner, T. H., Villringer, A., & Brandt, S. A. (2003). A physiological correlate of the “zoom lens” of visual attention. Journal of Neuroscience, 23(9), 3561–5. doi:10.1523/JNEUROSCI.23-09-03561.2003Google Scholar
Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The attentional field has a Mexican hat distribution. Vision Research, 45(9), 1129–37. doi:10.1016/j.visres.2004.11.003Google Scholar
Najmi, S., Hindash, A. C., & Amir, N. (2010). Executive control of attention in individuals with contamination-related obsessive-compulsive symptoms. Depression and anxiety, 27(9), 807–12. doi:10.1002/da.20703Google Scholar
Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631–47. doi:10.1016/0042-6989(89)90144-2Google Scholar
Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–83. doi:10.1016/0010-0285(77)90012-3Google Scholar
Navon, D. (1981). The forest revisited: More on global precedence. Psychological Research, 43(1), 132. doi:10.1007/bf00309635Google Scholar
Notebaert, L., Crombez, G., Van Damme, S., Durnez, W., & Theeuwes, J. (2013). Attentional prioritisation of threatening information: Examining the role of the size of the attentional window. Cognition and Emotion, 27(4), 621–31. doi:10.1080/02699931.2012.730036Google Scholar
Onie, S., & Most, S. B. (2017). Two roads diverged: Distinct mechanisms of attentional bias differentially predict negative affect and persistent negative thought. Emotion, 17(5), 884–94. doi:10.1037/emo0000280CrossRefGoogle ScholarPubMed
Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610–22. doi:10.1016/j.visres.2010.10.020Google Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389. doi:10.1146/annurev-neuro-062111-150525Google Scholar
Pletzer, B., Scheuringer, A., & Scherndl, T. (2017). Global-local processing relates to spatial and verbal processing: implications for sex differences in cognition. Scientific Reports, 7(1), 10575. doi:10.1038/s41598-017-11013-6Google Scholar
Pomerantz, J. R. (1983). Global and local precedence: selective attention in form and motion perception. Journal of Experimental Psychology: General, 112(4), 516–40.Google Scholar
Pomerantz, J. R., & Schwaitzberg, S. D. (1975). Grouping by proximity: Selective attention measures. Perception & Psychophysics, 18(5), 355–61. doi:10.3758/bf03211212Google Scholar
Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 325. doi:10.1080/00335558008248231Google Scholar
Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In Bouma, H & Bouwhuis, D, eds., Attention & Performance X, Hillsdale: Erlbaum, pp. 531–56.Google Scholar
Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 123. doi:10.1146/annurev.psych.58.110405.085516Google Scholar
Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–74. doi:10.1037/0096-3445.109.2.160Google Scholar
Pringle, H. L., Irwin, D. E., Kramer, A. F., & Atchley, P. (2001). The role of attentional breadth in perceptual change detection. Psychonomic Bulletin & Review, 8(1), 8995. doi:10.3758/bf03196143Google Scholar
Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: reaction time and accuracy reveal different mechanisms. Journal of Experimental Psychology: General, 134(1), 7392. doi:10.1037/0096-3445.134.1.73Google Scholar
Prinzmetal, W., Zvinyatskovskiy, A., Gutierrez, P., & Dilem, L. (2009). Voluntary and involuntary attention have different consequences: the effect of perceptual difficulty. Quarterly Journal of Experimental Psychology, 62(2), 352–69. doi:10.1080/17470210801954892Google Scholar
Proud, M., Goodhew, S. C., & Edwards, M. (2020). A vigilance avoidance account of spatial selectivity in dual-stream emotion induced blindness. Psychonomic Bulletin & Review. doi:10.3758/s13423-019-01690-xGoogle Scholar
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–60. doi:10.1037/0096-1523.18.3.849Google Scholar
Richard, A. M., Lee, H., & Vecera, S. P. (2008). Attentional spreading in object-based attention. Journal of Experimental Psychology: General, 34(4), 842–53. doi:10.1037/0096-1523.34.4.842Google Scholar
Robertson, L. C. (1996). Attentional persistence for features of hierarchical patterns. Journal of Experimental Psychology: General, 125(3), 227–49. doi:10.1037/0096-3445.125.3.227Google Scholar
Robertson, L. C., Egly, R., Lamb, M. R., & Kerth, L. (1993). Spatial attention and cuing to global and local levels of hierarchical structure. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 471–87. doi:10.1037//0096-1523.19.3.471Google Scholar
Roenker, D. L., Cissell, G. M., Ball, K. K., Wadley, V. G., & Edwards, J. D. (2003). Speed-of-processing and driving simulator training result in improved driving performance. Hum Factors, 45(2), 218–33. doi:10.1518/hfes.45.2.218.27241Google Scholar
Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences, 104(1), 383–8. doi:10.1073/pnas.0605198104Google Scholar
Sasaki, Y., Hadjikhani, N., Fischl, B., Liu, A. K., Marret, S., Dale, A. M., & Tootell, R. B. H. (2001). Local and global attention are mapped retinotopically in human occipital cortex. Proceedings of the National Academy of Sciences, 98(4), 2077–82. doi:10.1073/pnas.98.4.2077Google Scholar
Schiller, P. H., & Logothetis, N. K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13(10), 392–8. doi:10.1016/0166-2236(90)90117-sGoogle Scholar
Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Functions of the color-opponent and broad-band channels of the visual-system. Nature, 343(6253), 6870. doi:10.1038/343068a0Google Scholar
Sekuler, R., & Ball, K. (1986). Visual localization: age and practice. Journal of the Optical Society of America A, 3(6), 864–7. doi:10.1364/JOSAA.3.000864Google Scholar
Senzaki, S., Masuda, T., & Nand, K. (2014). Holistic Versus Analytic Expressions in Artworks: Cross-Cultural Differences and Similarities in Drawings and Collages by Canadian and Japanese School-Age Children. Journal of cross-cultural psychology, 45(8), 1297–316. doi:10.1177/0022022114537704Google Scholar
Seya, Y., Nakayasu, H., & Yagi, T. (2013). Useful Field of View in Simulated Driving: Reaction Times and Eye Movements of Drivers. i-Perception, 4(4), 285–98. doi:10.1068/i0512CrossRefGoogle ScholarPubMed
Shomstein, S., Lee, J., & Behrmann, M. (2010). Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices. Experimental Brain Research, 206(2), 197208. doi:10.1007/s00221-010-2326-zGoogle Scholar
Shulman, G. L., Sullivan, M. A., Gish, K., & Sakoda, W. J. (1986). The role of spatial-frequency channels in the perception of local and global structure. Perception, 15(3), 259–73. doi:10.1068/p150259Google Scholar
Spearman, C. (1910). CORRELATION CALCULATED FROM FAULTY DATA. British Journal of Psychology, 1904–1920, 3(3), 271295. doi:doi:10.1111/j.2044-8295.1910.tb00206.xGoogle Scholar
Srinivasan, N., & Hanif, A. (2010). Global-happy and local-sad: Perceptual processing affects emotion identification. Cognition and Emotion, 24(6), 1062–9. doi:10.1080/02699930903101103Google Scholar
Stoffer, T. H. (1993). The time course of attentional zooming: a comparison of voluntary and involuntary allocation of attention to the levels of compound stimuli. Psychological Research, 56(1), 1425.Google Scholar
Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/ contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol, 62(3), 626–41. doi:10.1152/jn.1989.62.3.626Google Scholar
Taylor, C. T., Cross, K., & Amir, N. (2016). Attentional control moderates the relationship between social anxiety symptoms and attentional disengagement from threatening information. Journal of Behavior Therapy and Experimental Psychiatry, 50, 6876. doi:10.1016/j.jbtep.2015.05.008Google Scholar
Taylor, J. E., Chan, D., Bennett, P. J., & Pratt, J. (2015). Attentional cartography: mapping the distribution of attention across time and space. Attention Perception & Psychophysics, 77(7), 2240–6. doi:10.3758/s13414-015-0943-0Google Scholar
Thomas, L. E. (2015). Grasp Posture Alters Visual Processing Biases Near the Hands. Psychological Science, 26(5), 625–32. doi:10.1177/0956797615571418Google Scholar
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190203. doi:10.1111/1469-8986.3720190Google Scholar
Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal of Experimental Psychology: Human Perception and Performance, 8(4), 562–81. doi:10.1037/0096-1523.8.4.562Google Scholar
White, C. N., Ratcliff, R., & Starns, J. S. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210–38. doi:10.1016/j.cogpsych.2011.08.001Google Scholar
Wilkinson, D. T., Halligan, P. W., Marshall, J. C., Büchel, C., & Dolan, R. J. (2001). Switching between the Forest and the Trees: Brain Systems Involved in Local/Global Changed-Level Judgments. NeuroImage, 13(1), 5667. doi:doi.org/10.1006/nimg.2000.0678Google Scholar
Wilson, K. E., Lowe, M. X., Ruppel, J., Pratt, J., & Ferber, S. (2016). The scope of no return: Openness predicts the spatial distribution of Inhibition of Return. Attention, Perception & Psychophysics, 78, 209–17. doi:10.3758/s13414-015-0991-5CrossRefGoogle ScholarPubMed
Wood, J. M., Chaparro, A., Lacherez, P., & Hickson, L. (2012). Useful field of view predicts driving in the presence of distracters. Optom Vis Sci, 89(4), 373–81. doi:10.1097/OPX.0b013e31824c17eeGoogle Scholar
Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–5. doi:10.1038/23936Google Scholar
Yeshurun, Y., & Carrasco, M. (2008). The effects of transient attention on spatial resolution and the size of the attentional cue. Perception & Psychophysics, 70(1), 104–13. doi:10.3758/PP.70.1.104Google Scholar
Yeshurun, Y., & Levy, L. (2003). Transient spatial attention degrades temporal resolution. Psychological Science, 14(3), 225–31. doi:10.1111/1467-9280.02436Google Scholar
Yeshurun, Y., & Marom, G. (2008). Transient spatial attention and the perceived duration of brief visual events. Visual Cognition, 16(6), 826–48. doi:10.1080/13506280701588022Google Scholar
Yeshurun, Y., Montagna, B., & Carrasco, M. (2008). On the flexibility of sustained attention and its effects on a texture segmentation task. Vision Research, 48(1), 8095. doi:10.1016/j.visres.2007.10.015Google Scholar
Yeshurun, Y., & Sabo, G. (2012). Differential effects of transient attention on inferred parvocellular and magnocellular processing. Vision Research, 74, 21–9. doi:10.1016/j.visres.2012.06.006Google Scholar
Yovel, G., Levy, J., & Yovel, I. (2001). Hemispheric asymmetries for global and local visual perception: effects of stimulus and task factors. Journal of Experimental Psychology: Human Perception and Performance, 27(6), 1369–85. doi:10.1037/0096-1523.27.6.1369Google Scholar
Zvielli, A., Bernstein, A., & Koster, E. H. W. (2015). Temporal Dynamics of Attentional Bias. Clinical Psychological Science, 3(5), 772–88. doi:10.1177/2167702614551572Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Breadth of Visual Attention
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Breadth of Visual Attention
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Breadth of Visual Attention
Available formats
×