Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-nk9cn Total loading time: 0 Render date: 2025-12-08T21:12:44.565Z Has data issue: false hasContentIssue false

Bioarchaeology of Infants and Children

Published online by Cambridge University Press:  25 August 2025

L. Creighton Avery
Affiliation:
University of Toronto

Summary

The study of infant, child, and adolescent remains (non-adult remains) is a topic of growing interest within the fields of archaeology and bioarchaeology. Many published volumes and articles delve into the experiences of childhood and what these small remains may tell us about life, more broadly, in the past. For those interested in exploring infant and child remains, it is an exciting period as more methods and approaches are constantly being incorporated into the archaeological toolkit. This Element introduces the reader to the topic and to common methodological approaches used to consider non-adult remains from archaeological contexts. With this toolkit in hand, readers will be able to begin their own explorations and analyses of non-adult human remains within archaeological contexts.
Get access

Information

Type
Element
Information
Online ISBN: 9781009543675
Publisher: Cambridge University Press
Print publication: 25 September 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

Bibliography

Acheson, R. (1966). Maturation of the Skeleton. In Faulkner, F. (Ed.), Human Development. Philadelphia: Saunders, pp. 465502.Google Scholar
Agarwal, S., and Glencross, B.. (2011). Building a Social Bioarchaeology. In Agarwal, S. and Glencross, B. (Eds.), Social Bioarchaeology. Oxford: Blackwell, pp. 112.CrossRefGoogle Scholar
Agarwal, S., and Wesp, J. K. (Eds.). (2017). Exploring Sex and Gender in Bioarchaeology. London: Blackwell.Google Scholar
Amoroso, A., and Garcia, S. J.. (2018). Can Early Life Growth Disruptions Predict Longevity? Testing the Association between Vertebral Neural Canal (VNC) Size and Age-at-Death. International Journal of Paleopathology 22 (Sept): 817. DOI: https://doi.org/10.1016/j.ijpp.2018.03.007.CrossRefGoogle ScholarPubMed
Ariès, P. (1962). Centuries of Childhood: A Social History of Family Life. New York: Vintage Books.Google Scholar
Arthur, N., Gowland, R., and Redfern, R.. (2016). Coming of Age in Roman Britain: Osteological Evidence for Pubertal Timing. American Journal of Physical Anthropology 159(4): 698713. DOI: https://doi.org/10.1002/ajpa.22929.CrossRefGoogle Scholar
Audsley, B., and Khan, M.. (October 2024). Atlas software app. Accessed electronically: www.qmul.ac.uk/dentistry/atlas/software-app/. Last accessed December 12, 2024.Google Scholar
Avery, L. C., Brickley, M., Findlay, S., Chapelain de Seréville-Niel, C., and Prowse, T.. (2021). Child and Adolescent Diet in Late Roman Gaul: An Investigation of Incremental Dietary Stable Isotopes in Tooth Dentine. International Journal of Osteoarchaeology 31(6): 12261236. DOI: https://doi.org/10.1002/oa.3033.CrossRefGoogle Scholar
Avery, L. C., Prowse, T., and Brickley., M. (2019). Dental health and dietary difference at Late Roman Winchester. Bioarchaeology International. 3(30): 157173. DOI: https://doi.org/10.5744/bi.2019.1011.Google Scholar
Avery, L. C., Prowse, T., Findlay, S., and Brickley, M.. (2022). Bioarchaeological Approaches to the Study of Adolescence. Childhood in the Past 15(1): 314. DOI: https://doi.org/10.1080/17585716.2022.2055865.CrossRefGoogle Scholar
Avery, L. C., Brickley, M., Findlay, S., Bondioli, L., Sperduti, A., and Prowse, T.. (2023b). Eating Like Adults: An Investigation of Dietary Change in Childhood and Adolescence at Portus Romae (Italy, 1st–4th Centuries CE). Bioarchaeology International: Emerging Adolescence 7(2). DOI: https://doi.org/10.5744/bi.2022.0006.Google Scholar
Baker, B., Dupras, T., and Tocheris, M.. (2005). The Osteology of Infants and Children. College Station: Texas A&M University Press.Google Scholar
Baxter, J. (2008). The Archaeology of Childhood. Annual Review of Anthropology 37 (2008): 159175.10.1146/annurev.anthro.37.081407.085129CrossRefGoogle Scholar
Baxter, J. (2019). How to die a good death: Teaching young children about mortality in nineteenth century America. Childhood in the Past 12(1): 35-49. DOI: 10.1080/175716.2019.1587913.CrossRefGoogle Scholar
Beauchesne, P., and Agarwal, S. C.. (2018). Children and Childhood in Bioarchaeology. Gainesville: University Press of Florida.CrossRefGoogle Scholar
Biehler-Gomez, L., Mattia, M., Mondellini, M., Palazzolo, L., and Cattaneo., C. (2022). Differential Skeletal Preservation between Sexes: A Diachronic Study in Milan over 2000 Years. Archaeological and Anthropological Sciences 14 (2022): 147. DOI: https://doi.org/10.1007/s12520-022-01616-0.CrossRefGoogle Scholar
Bogin, B. (1999). Patterns of Human Growth. Cambridge: Cambridge University Press.Google ScholarPubMed
Booth, T. J., Redfern, R. C., and Gowland, R. L.. 2016. Immaculate Conceptions: Micro-CT Analysis of Diagenesis in Romano-British Infant Skeletons. Journal of Archaeological Science 74 (October): 124134.10.1016/j.jas.2016.08.007CrossRefGoogle Scholar
Brzobohatá, H., Velimsky, F., and Frolik, J.. (2023). Early Stress Variation Reflected in Adult Vertebral Neural Canal Size within a Medieval Silver-Mining Population from Kutna Hora (Czech Republic). Anthropological Science 123(2): 151162. DOI: https://doi.org/10.1537/ase.231017.Google Scholar
Buckberry, J. (2005). Where Have All the Children Gone? The Preservation of Infant and Children’s Remains in the Archaeological Record. Paper presented at The Archaeology of Infancy and Childhood conference, May 6–8, 2005. Kent: University of Kent.Google Scholar
Buikstra, J., and Cook., D. (1980). Paleopathology: An American Account. Annual Review of Anthropology 9: 433470.10.1146/annurev.an.09.100180.002245CrossRefGoogle Scholar
Buikstra, J., and Ubelaker, D.. (1994). Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History (Arkansas Archaeology Research Series 44). Fayetteville, AR: Archaeological Survey.Google Scholar
Buonasera, T., Eerkns, J., de Flamingh, A., Engbring, L., Yip, J., Li, H., Haas, R., DiGiuseppe, D., Grant, D., Salemi, M., Nijmeh, C., Arellano, M., Leventhal, A., Phinney, B., Byrd, B. F., Malhi, R. S., and Parker., G. (2020). A Comparison of Proteomic, Genomic, and Osteological Methods of Archaeological Sex Estimation. Nature: Scientific Reports 10:11897. DOI: https://doi.org/10.1038/s41598-020-68550-w.Google ScholarPubMed
Caffey, J. (1974). The Whiplash Shaken Infant Syndrome: Manual Shaking by the Extremities with Whiplash-Induced Intracranial and Intraocular Bleeding, Linked with Residual Permanent Brain Damage and Metal Retardation. Pediatrics 54: 396403.CrossRefGoogle Scholar
Cardoso, H. (2008a). Epiphyseal Union at the Innominate and Lower Limb in a Modern Portuguese Skeletal Sample, and Age Estimation in Adolescent and Young Adult Male and Female Skeletons. American Journal of Physical Anthropology 135(2): 161170. DOI: https://doi.org/10.1002/ajpa.20717.CrossRefGoogle Scholar
Cardoso, H. (2008b). Age Estimation of Adolescent and Young Adult Male and Female Skeletons II, Epiphyseal Union at the Upper Limb and Scapular Girdle in a Modern Portuguese Skeletal Sample. American Journal of Physical Anthropology 137(1): 97105. DOI: https://doi.org/10.1002/ajpa.20850.CrossRefGoogle Scholar
Cardoso, H. (2008c). Sample Specific (Universal) Metric Approaches for Determining the Sex of Immature Human Skeletal Remains Using Permanent Tooth Dimensions. Journal of Archaeological Science 35(1): 158168. DOI: https://doi.org/10.1016/j.jas2007.02.013.CrossRefGoogle Scholar
Chertkow, S. (1980). Tooth Mineralization as an Indicator of the Pubertal Growth Spurt. American Journal of Orthodontics 77(1): 7991. DOI: https://doi.org/10.1016/0002-9416(80)90226-2.CrossRefGoogle Scholar
Chertkow, S., and Fatti, P.. (1979). The Relationship Between Tooth Mineralization and Early Radiographic Evidence of the Ulnar Sesamoid. The Angle Orthodontist 49(4): 282288.Google ScholarPubMed
Cheverko, C. (2020). “Life Course Approaches and Life History Theory: Synergistic Perspectives for Bioarchaeology”. In Cheverko et al. (Eds.), Theoretical Approaches in Bioarchaeology (pp. 5975).10.4324/9780429262340-5CrossRefGoogle Scholar
Cheverko, C. M., Prince-Buitenhuys, J. R., and Hubbe., M. (2021). Theoretical Approaches in Bioarchaeology. London: Routledge Taylor & Francis Group.Google Scholar
Christensen, A. M., Passalacqua, N. V., and Bartelink, E. J.. (2014). Forensic Anthropology: Current Methods and Practice. New York: Academic Press.Google Scholar
Claassen, C. (Ed.). (1992). Exploring Gender through Archaeology: Selected Papers from the 1991 Boone Conference. Madison, WI: Prehistory Press.Google Scholar
Clark, G., Hall, N., Amelagos, G., G. B, Panjabi, M., and Wetzel, F.. (1986). Poor Growth prior to Early Childhood: Decreased Health and Lifespan in the Adult. American Journal of Physical Anthropology 70(2): 145160.10.1002/ajpa.1330700202CrossRefGoogle ScholarPubMed
Cootes, K., Thomas, M., Jordan, D., Axworthy, J., and Carlin, R.. (2020). Blood Is Thicker Than Baptismal Water: A Late Medieval Perinatal Burial in a Small Household Chest. International Journal of Osteoarchaeology 31(3): 358365. DOI: https://doi.org/10.1002/oa.2955.CrossRefGoogle Scholar
Coutinho, S., Buschang, P., and Miranda, F.. (1993). Relationships between Mandibular Canine Calcification Stages and Skeletal Maturity. American Journal of Orthodontics and Dentofacial Orthopedics 104(3): 262298. DOI: https://doi.org/10.1016/S0889-5406(05)81728-7.CrossRefGoogle ScholarPubMed
Cunningham, C., Scheuer, L., Black, S., Liversidge, H., and Christie, A.. (2016). Developmental Juvenile Osteology. Amsterdam: Elsevier.Google Scholar
Demirjian, A., Goldstein, H., and Tanner, J.. (1973). A New System of Dental Age Assessment. Human Biology 45(2): 211227.Google ScholarPubMed
Demirjian, A., Buschang, P., Tanguay, R., and Kingnorth, P.. (1985). Interrelationships among Measures of Somatic, Skeletal, Dental and Sexual Maturity. American Journal of Orthodontics 88(5): 433438. DOI: https://doi.org/10.1016.0002-9416(85)90070-3.CrossRefGoogle ScholarPubMed
Dhavale, N., Halcrow, S., Buckley, H., Tayles, N., Domett, K., and Gray, A.. (2017). Linear and Appositional Growth in Infants and Children from the Prehistoric Settlement of Ban Non Wat, Northeast Thailand: Evaluating Biological Responses to Agricultural Intensification in Southeast Asia. Journal of Archaeological Science: Reports 11(2017): 435446. DOI: https://doi.org/10.1016/j.jasrep.2016.12.019.Google Scholar
Dreizen, S., Spirakis, C., and Stone, R.. (1967). A Comparison of Skeletal Growth and Maturation in Undernourished and Well-Nourished Girls before and after Menarche. The Journal of Pediatrics 70(2): 256263.10.1016/S0022-3476(67)80420-7CrossRefGoogle ScholarPubMed
Ellis, M. (2020). Still life: A Bioarchaeological Portrait of Perinatal Remains Buried at the Spring Street Presbyterian Church. Historic Archaeology 54(2020): 184201. DOI: https://doi.org/10.1007/s41636-019-00216-5.CrossRefGoogle Scholar
Eyben, E. (1972). Antiquity’s View of Puberty. Latomus 31(3): 677697.Google ScholarPubMed
Falys, C., and Lewis, M. (2020). Puberty in the Past. The Archaeologist 109: 1011.Google Scholar
Falys, C., Schutkowski, H., and Weston, D.. (2005). The Distal Humerus: A Blind Test of Rogers’ Sexing Technique Using a Documented Skeletal Collection. Journal of Forensic Science 50(6): 12891294. DOI: https://doi.org/10.1520/JFS2005171.CrossRefGoogle Scholar
Fausto-Sterling, A., Garcia Coll, C., and Lamarre, M.. (2012). Sexing the Baby: Part 1 – What Do We Really Know about Sex Differentiation in the First Three Years of Life? Social Science Medicine 74(11): 16841692.10.1016/j.socscimed.2011.05.051CrossRefGoogle ScholarPubMed
Fibiger, L. (2014). Misplaced Childhood? Interpersonal Violence and Children in Neolithic Europe. In Smith, M. and Knusel, C. (Eds.), The Routledge Handbook of the Bioarchaeology of Human Conflict. Abingdon: Routledge, pp. 127145.Google Scholar
Ford, K., Khoury, J., and Biro, F.. (2009). Early Markers of Pubertal Onset: Height and Foot Size. Journal of Adolescent Health 44(5): 500501.10.1016/j.jadohealth.2008.10.004CrossRefGoogle ScholarPubMed
Gamble, J., and Bentley, G.. (2022). Developmental Origins of Health and Disease (DOHaD): Perspectives from Bioarchaeology. In Plomp, K. A. et al. (Eds.), Palaeopathology and Evolutionary Medicine. Oxford: Oxford University Press, pp. 1741.10.1093/oso/9780198849711.003.0002CrossRefGoogle Scholar
Garland, C. J. (2020). Implications of Accumulative Stress Burdens during Critical Periods of Early Postnatal Life for Mortality Risk among Guale Interred in a Colonial Era Cemetery in Spanish Florida (ca. AD 1605–1680. American Journal of Biological Anthropology 172(4): 621637. DOI: https://doi.org/10.1002/ajpa.24020.CrossRefGoogle Scholar
Geller, P. (2008). Conceiving Sex: Fomenting a Feminist Bioarchaeology. Journal of Social Archaeology. 8(1): 113138. DOI: https://doi.org/10.1177/1469605307086080.CrossRefGoogle Scholar
Geller, P. (2021). Theorizing Bioarchaeology. In Martin, D. L. (Series Ed.). Bioarchaeology and Social Theory. London: Springer.10.1007/978-3-030-70704-0CrossRefGoogle Scholar
Gero, J. M., and Conkey, M. W. (Eds.) (1991). Engendering Archaeology: Women and Prehistory. Cambridge, MA: Blackwell.Google Scholar
Gilchrist, R. (2022). Voices from the Cemetery: The Social Archaeology of Late-Medieval Burial. Medieval Archaeology 66(1): 120150. DOI: https://doi.org/10.1080/00766097.2022.2003610.CrossRefGoogle Scholar
Goodman, A., and Armelagos, G.. (1989). Infant and Childhood Morbidity and Mortality Risks in Archaeological Populations. World Archaeology 21 (2): 225243.CrossRefGoogle ScholarPubMed
Goodman, A., and Leatherman, T. (1998). Building a New Biocultural Synthesis: Political-Economic Perspectives of Human Biology. Ann Arbor: The University of Michigan Press.10.3998/mpub.10398CrossRefGoogle Scholar
Gowland, R. (2006). Ageing the past: Examining age identity from funerary evidence. In Gowland, R. and Knusel, C. (Eds.), The social archaeology of funerary remains. Barnsley, UK: Oxbow Books, pp. 143154.Google Scholar
Gowland, R. (2015). Entangled Lives: Implications for the Developmental Origins of Health and Disease Hypothesis for Bioarchaeology and the Life Course. American Journal of Physical Anthropology 158(4): 530540.10.1002/ajpa.22820CrossRefGoogle ScholarPubMed
Gowland, R. (2017). Embodied Identities in Roman Britain: A Bioarchaeological Approach. Britannia. DOI: https://doi.org/10.1017/S0068113X17000125.CrossRefGoogle Scholar
Gowland, R., and Caldwell, J.. (2022). The Developmental Origins of Health and Disease. The Routledge Handbook of Paleopathology. London: Routledge. DOI: https://doi.org/10.4324/9781003130994.Google Scholar
Gowland, R., and Halcrow, S.. (2020). The Mother–Infant Nexus in Anthropology: Small Beginnings, Significant Outcomes. Cham: Springer. DOI: https://doi.org/10.1007/978-3-030-27393-4.CrossRefGoogle Scholar
Gowland, R., Stewart, N. A., Crowder, K. D., Hodson, C., Shaw, H., Gron, K. J., and Montgomery, J.. (2021). Sex Estimation of Teeth at Different Developmental Stages Using Dimorphic Enamel Peptide Analysis. American Journal of Biological Anthropology 174(4): 859869. DOI: https://doi.org/10.1002/akpa.24231.CrossRefGoogle ScholarPubMed
Grave, K., and Brown, T.. (1976). Skeletal Ossification and the Adolescent Growth Spurt. American Journal of Orthodontics 69(6): 611619. DOI: https://doi.org/10.1016/0002-9416(76)90143-3.CrossRefGoogle ScholarPubMed
Greulich, W., and Pyle., S. (1950). Radiographic atlas of skeletal development of the hand and wrist. Standford University Press.Google Scholar
Gustafson, G., and Koch, G.. (1974). Age Estimation up to 16 Years of Age based on Dental Development. Odontologisk Revy 25(3): 297306.Google ScholarPubMed
Gutierrez, E., Ribot, I., and Helie, J.-F.. (2021). Weaning among Colonists from Montreal and Environs: What Can Nitrogen Isotope Analysis on Dentine Tell Us? Bioarchaeology International 5(3–4): 124142. DOI: https://doi.org/10.5744/bi.2020.0022.CrossRefGoogle Scholar
Hagg, U., and Taranger, J.. (1980). Menarcheal and Voice Change as Indicators of the Pubertal Growth Spurt. Acta Odontologica Scandinavica 38(3): 179186. DOI: https://doi.org/10.3109/00016358009004718.CrossRefGoogle ScholarPubMed
Hagg, U., and Taranger, J.. (1982). Maturation Indicators and the Pubertal Growth Spurt. American Journal of Orthodontics 82(4): 299309. DOI: https://doi.org/10.1016/0002-9416(82)90464-X.CrossRefGoogle ScholarPubMed
Halcrow, S. (2019). Infants in the Bioarchaeological Past: Who Cares? In Gowland, R. and Halcrow, S. (Eds.) The Mother–Infant Nexus in Anthropology: Small Beginnings, Significant Outcomes. Cham: Springer, pp. 1938.Google Scholar
Halcrow, S., and Tayles, N.. (2008). The Bioarchaeological Investigation of Childhood and Social Age: Problems and Prospects. Journal of Archaeological Method and Theory 15(2008): 190215. DOI: https://doi.org/10.1007/s10816-008-9052-x.CrossRefGoogle Scholar
Halcrow, S., and Tayles, N.. (2011). The Bioarchaeological Investigation of Children and Childhood. In Agarwal, S. C. and Glencross, B. A. (Eds.), Social Bioarchaeology, pp. 333360. Oxford: Wiley-Blackwell.10.1002/9781444390537.ch12CrossRefGoogle Scholar
Hammond, G., and Hammond, N.. (1981). Child’s Play: A Distorting Factor in Archaeological Distribution. American Antiquity 46(1981): 634636.10.2307/280608CrossRefGoogle Scholar
Hassel, B., and Farman, A.. (1995). Skeletal Maturation Evaluation Using Cervical Vertebrae. American Journal of Orthodontics and Dentofacial Orthopedics 107(1): 5866. DOI: https://doi.org/10.1016/S0889-5406(95)70157-5.CrossRefGoogle ScholarPubMed
Hillson, S. (1996). Dental Anthropology. Cambridge: Cambridge University Press.10.1017/CBO9781139170697CrossRefGoogle Scholar
Hillson, S. (2001). Recording Dental Caries in Archaeological Human Remains. International Journal of Osteoarchaeology 11(4): 249289. DOI: https://doi.org/10.1002/oa.538.CrossRefGoogle Scholar
Hillson, S. (2008). The Current State of Dental Decay. In Technique and Application in Dental Anthropology, edited by Irish, Joel D. and Nelson, Greg C.. Cambridge: Cambridge University Press, pp. 111135.10.1017/CBO9780511542442.006CrossRefGoogle Scholar
Hillson, S. (2014). Tooth Development in Human Evolution and Bioarchaeology. Cambridge: Cambridge University Press.10.1017/CBO9780511894916CrossRefGoogle Scholar
Hodges, P. C. (1933). An epiphyseal chart. American Journal of Roentgenology 30: 809810.Google Scholar
Hodson, C. (2021). New Prospects for Investigation Early Life-Course Experiences and Health in Archaeological Fetal, Perinatal and Infant Individuals. Childhood in the Past 14(1): 312. DOI: https://doi.org/10.1080/17585716.2021.19058884.CrossRefGoogle Scholar
Holder, S., Miliauskiene, Z., Jankauskas, R., and Dupras, T.. (2021). An Interpretive Approach to Studying Plasticity in Growth Disruption and Outcomes: A Bioarchaeological Case Study of Napoleonic Soldiers. American Journal of Human Biology 33(2): e23457. DOI: https://doi.org/10.1002.ajhb.23457.CrossRefGoogle Scholar
Hollimon, S. (2011). Sex and Gender in Bioarchaeological Research. In Agarwal, S. C. and Glencross, B. A. (Eds.), Social Bioarchaeology. Oxford: Blackwell, pp. 149182.Google Scholar
Hollimon, S. (2017). Bioarchaeological Approaches to Nonbinary Genders: Case Studies from Native North America. In Agarwal, S. C. & Wesp, J. K. (Eds.), Exploring Sex and Gender in Bioarchaeology. Oxford: Blackwell, pp. 5169Google Scholar
Hooton, E. (1930). Indians of Pecos Pueblo: A Study of their Skeletal Remains. New Haven, CT: Yale University Press.Google Scholar
Inglis, Raelene, and Halcrow, Sian. (2018). The bioarchaeology of childhood: Theoretical development in the field. In Beauchesne, Patrick and Agarwal, Sabrina (Eds.), Children and Childhood in Bioarchaeology. Gainesville, FL: University Press of Florida, pp. 3360.Google Scholar
Jimenez del Val, Nasheli. (2009). Seeing cannibals: European colonial discourses on the Latin American other. PhD thesis, Cardiff University.Google Scholar
Johnston, F. (1962). Growth of Long Bones in Infants and Young Children at Indian Knoll. American Journal of Physical Anthropology 20(3): 249254.10.1002/ajpa.1330200309CrossRefGoogle ScholarPubMed
Joyce, R. (2005). Archaeology of the Body. Annual Review of Anthropology 34(1): 139158.10.1146/annurev.anthro.33.070203.143729CrossRefGoogle Scholar
Kamp, K. (2001). Where Have All the Children Gone? The Archaeology of Childhood. Journal of Archaeological Method and Theory 8(1): 134. DOI: https://doi.org/10.1023.a:1009562531188.CrossRefGoogle Scholar
Katzenberg, M., and Waters-Rist, A.. (2019). Stable Isotope Analysis: A Tool for Studying Past Diet, Demography and Life History. In Katzenberg, M. A. and Grauer, A. L. (Eds.), Biological Anthropology of the Human Skeleton, Third Edition. Oxford: Wiley Blackwell, pp. 469–504.Google Scholar
Kemp, A., Dunstan, F., Harrison, S., Morris, S., Mann, M., Rolfe, K., Datta, S., Thomas, D., Sibert, J., and Maguire, S.. (2008). Patterns of Skeletal Fractures in Child Abuse: Systematic Review. BMJ 337: a1518. DOI: https://doi.org/10.1136/bmj.a1518.CrossRefGoogle ScholarPubMed
Kenyhercz, Michael W., Klales, A. R., Stull, J. E., McCormick, K. A., and Cole, S. J.. (2017). Worldwide Population Variation in Pelvic Sexual Dimorphism: A Validation and Recalibration of the Klales et al. Method. Forensic Science International 227: 259.31–259.e8. DOI: https://doi.org/10.1016/j.forsciint.2017.05.001.Google Scholar
Klales, A. R., Ousley, S. D., and Vollner, J. M.. (2012). A Revised Method of Sexing the Human Innominate using Phenice’s Nonmetric Traits and Statistical Methods. American Journal of Physical Anthropology 149(1): 104114. DOI: https://doi.org/10.1002/ajpa.22102.CrossRefGoogle ScholarPubMed
Lally, M. (2008). Bodies, Bones, Objects and Stones: Investigating Infancy, Infant Death, Deposition and Human Identity in Iron Age Southern England. Unpublished PhD thesis, University of Southampton.Google Scholar
Lewis, M. (2007). The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.Google Scholar
Lewis, M. (2019). Children in Bioarchaeology: Methods and Interpretations. In Katzenberg, M. A. and A. L. (Eds.), Biological Anthropology of the Human Skeleton. Hoboken: Wiley & Sons, pp. 119144.Google Scholar
Lewis, M. (2022). Exploring Adolescence as a Key Life History Stage in Bioarchaeology. American Journal of Biological Anthropology 179(4): 519534. DOI: https://doi.org/10.1002/ajpa.24615.CrossRefGoogle Scholar
Lewis, M., and Montgomery, J.. (2023). Youth Mobility, Migration, and Health before and after the Black Death. Bioarchaeology International: Emerging Adolescence DOI: https://doi.org/5744/bi.2022.0015.Google Scholar
Lillehammer, G. (1989). A Child Is Born: The Child’s World in an Archaeological Perspective. Norwegian Archaeological Review 22:2, 89105. DOI: https://doi.org/10.1080/00293652.1989.9965496.CrossRefGoogle Scholar
Liston, M., and Papadopoulos, J.. (2004). The “Rich Athenian Lady” Was Pregnant: The Anthropology of a Geometric Tomb Reconsidered. Hesperia 73(1): 738.10.2972/hesp.2004.73.1.7CrossRefGoogle Scholar
Liston, M., and Rotroff, S.. (2013). Babies in the Well: Archaeological Evidence for Newborn Disposal in Hellenistic Greece. J. E. Grubbs and T. Parkin (Eds.), The Oxford Handbook of Childhood and Education in the Classical World. DOI: https://doi.org/10.1093/oxfordhb/9780199781546.013.003.CrossRefGoogle Scholar
Liversidge, H., Buckberry, J., and Marquez-Grant, N.. (2015). Age Estimation. Annals of Human Biology 42(4): 299301. DOI: https://doi.org/10.3109/03014460.2015.1089627.CrossRefGoogle ScholarPubMed
Lugli, F., Figus, C., Silvestrini, S., Costa, V., Bortolini, E., Conti, S., Peripoli, B., Nava, A., Sperduti, A., Lamanna, L., Bondioli, L., and Benazzi, S.. (2020). Sex-Related Morbidity and Mortality in Non-adult Individuals from the Early Medieval site of Valdaro (Italy): The Contribution of Dental Enamel Peptide Analysis. Journal of Archaeological Science: Reports 34(2020): 102625. DOI: https://doi.org/10.1016/j.jasrep.2020.102625.Google Scholar
Lukacs, J. (2008). Fertility and Agricultura Accentuate Sex Differences in Dental Caries Rates. Current Anthropology 49(5): 901914. DOI: https://doi.org/10.1086/592111.CrossRefGoogle Scholar
Lukacs, J. (2009). Markers of Physiological Stress in Juvenile Bonobos (Pan paniscus): Are Enamel Hypoplasia, Skeletal Development, and Tooth Size Interrelated? American Journal of Physical Anthropology 139(3): 339352. DOI: https://doi.org/10.1002/ajpa.20990.CrossRefGoogle ScholarPubMed
Maass, C. (2023). Childhood in Captivity: Bioarchaeological Evidence from a Late Colonial Sugar Plantation in Central Peru. Latin American Antiquity 34(1): 194211. DOI: https://doi.org/10.1017/laq.2022.35.CrossRefGoogle Scholar
Mahfouz, E. M., Mohammed, E. S., Alkilany, S. F., and Rahman, T. A. A.. (2021). The Relationship between Dietary Intake and Stunting among Pre-school Children in Upper Egypt. Public Health Nutrition 25(8): 21792187. DOI: https://doi.org/10.1017/S136898002100389X.CrossRefGoogle ScholarPubMed
Maresh, M. (1943). Growth of Major Long Bones in Healthy Children. American Journal of Diseases of Children 66(3): 227257.10.1001/archpedi.1943.02010210003001CrossRefGoogle Scholar
Maresh, M. (1955). Linear Growth of Long Bones of Extremities from Infancy through Adolescence. American Journal of Diseases of Children 89(6): 725742.Google ScholarPubMed
Maresh, M. (1970). Measurements from Roentgenograms, Heart Size, Long Bone Lengths, Bone, Muscles and Fat Widths, Skeletal Maturation. In McCammon, R. W. (Ed.), Human Growth and Development Springfield, IL: C. C. Thomas, pp. 155200.Google Scholar
Marini, N., and Flensborg, G.. (2023). Systemic Stress in Hunter-Gatherers from the Central Pampas Dunefields (Argentina): Evaluating Linear Enamel Hypoplasia during the Holocene. Archaeological and Anthropological Sciences 15(6): 83. DOI: https://doi.org/10.1007/s12520-023-01781-w.CrossRefGoogle Scholar
Marshall, W., and Tanner, J.. (1969). Variations in Pattern of Pubertal Changes in Girls. Archives of Disease in Childhood 44(235): 291303. DOI: https://doi.org/10.1136/adc.44.235.291.CrossRefGoogle ScholarPubMed
Marshall, W., and Tanner, J.. (1970). Variations in the Pattern of Pubertal Changes in Boys. Archives of Disease in Childhood 45(239): 1323. DOI: https://doi.org/10.1136/adc.45.239.13.CrossRefGoogle ScholarPubMed
Martin, D., and Harrod, R.. (2015). Bioarchaeological Contributions to the Study of Violence. Yearbook of Physical Anthropology 156 (S59): 116145. DOI: https://doi.org/10.1002/ajpa.22662.CrossRefGoogle Scholar
Mays, S. (2001). Sex Identification in Some Putative Infanticide Victims from Roman Britain Using Ancient DNA. Journal of Archaeological Science 28(5): 555559. DOI: https://doi.org/10.1006/jasc.2001.0616.CrossRefGoogle Scholar
Mays, S. (2018). The Study of Growth in Skeletal Populations. In Crawford, S. E., Haldey, D. M., and Shepherd, G. B. (Eds.), The Oxford Handbook of the Archaeology of Childhood. Oxford: Oxford University Press, pp. 7189.Google Scholar
McFadden, C., Muir, B., and Oxenham, M.. (2022). Determinants of Infant Mortality and Representation in Bioarchaeological Samples: A Review. American Journal of Physical Anthropology 177(2): 196206. DOI: https://doi.org/10.1002/ajpa.24406.Google Scholar
Miller, M. J., Dong, Y., Pechenkina, K., Fan, W., and Halcrow, S. E.. (2020). Raising Girls and Boys in Early China: Stable Isotope Data Reveal Sex Differences in Weaning and Childhood Diets during the Eastern Zhou Era. American Journal of Biological Anthropology 172(4): 567585. DOI: https://doi.org/10.1002/ajpa.24033.CrossRefGoogle Scholar
Miller, M. J., Agarwal, S. C., and Langebaek, C. H.. (2018). Dietary Histories: Tracing Food Consumption Practices from Childhood through Adulthood Using Stable Isotope Analysis. In Beauchesne, P. and Agarwal, S. (Eds.), Children and Childhood in Bioarchaeology. Gainesville, FL: University of Florida Press, pp. 262293.10.2307/j.ctvx0794d.15CrossRefGoogle Scholar
Moore, W., and Corbett, M.. (1971). Distribution of Dental Caries in Ancient British populations: I Anglo-Saxon Period. Caries Research 5(2): 151168. DOI: https://doi.org/10.1159/000259743.CrossRefGoogle ScholarPubMed
Moore, W., and Corbett, M.. (1973). Distribution of Dental Caries in Ancient British Populations: II Iron Age, Romano-British and Medieval Period. Caries Research 7(2): 139153. DOI: https://doi.org/10.1159/000259838.CrossRefGoogle Scholar
Moorrees, C., Fanning, E., and Hunt, E.. (1963). Age Variation of Formation Stages for Ten Permanent Teeth. Journal of Dental Research 42(6): 14901502.10.1177/00220345630420062701CrossRefGoogle ScholarPubMed
Murphy, E. M. (2011). Children’s Burial Grounds in Ireland (Cillini) and Parental Emotions toward Infant Death. International Journal of Historic Archaeology 15(2011): 409428. DOI: https://doi.org/10.1007/s10761-011-0148-8.CrossRefGoogle Scholar
Murphy, E., and Roy, M. Le (Eds.). (2017). Children, Death, and Burial: Archaeological Discourses. Barnsley, UK: Oxbow Books.10.2307/j.ctt1v2xtdgCrossRefGoogle Scholar
National Children’s Alliance. (2023). National CAC Statistics. Accessed electronically: www.nationalchildrensalliance.org/wp-content/uploads/2024/03/24_NCA005_Annual_CAC_Stats_F-2.pdf. Last accessed August 30, 2024.Google Scholar
National Children’s Alliance. (2024). National Statistics on Child Abuse. Accessed electronically: www.nationalchildrensalliance.org/media-room/national-statistics-on-child-abuse/. Last accessed August 30, 2024.Google Scholar
Nava, A. (2024). Understanding the Mother–Infant Nexus from Dental Histology and High-Resolution Compositional Biogeochemistry: Implications for Bioarchaeological Research. Bulletins et memoires de la societe d’anthropologie de Paris 36(1): 1021. DOI: https://doi.org/10.4000/bmsap.13828.Google Scholar
Newman, S. L., and Gowland, R. L.. (2015). Brief Communication: The Use of Non-adult Vertebral Dimensions as Indicators of Growth Disruption and Non-specific Health Stress in Skeletal Populations. American Journal of Physical Anthropology 158(1): 155164. DOI: https://doi.org/10.1002/ajpa.22770.CrossRefGoogle Scholar
Nikitovic, D. (2017). Embodiment of Puebloan Childhoods: Towards a Bioarchaeology of Childhood. Unpublished doctoral dissertation, Department of Anthropology, Toronto: University of Toronto.Google Scholar
O’Connell, L. (2004). Guidance on recording age at death in adults. In Brickley, M. and McKinley, J. I. (Eds.), Guidelines to the Standards for Recording Human Remains. Southampton, UK: British Association for Biological Anthropology and Osteoarchaeology, pp. 1820.Google Scholar
Olivier, G., and Pineau, H.. (1960). Nouvelle détermination de la taille foetal d’apres les longueurs diaphysaires des os long. Annales de médecine légale 68 (51): 141144.Google Scholar
Ozer, T., Jama, J., and Ozer, S.. (2006). A Practical Method for Determining Pubertal Growth Spurt. American Journal of Orthodontics and Dentofacial Orthopedics 130(2): 131.e1–131.e6. DOI: https://doi.org/10.1016/j.ajodo.2006.01.019.CrossRefGoogle ScholarPubMed
Parker, G. J., Yip, J. M., Eerkens, J. W., Salemi, M., Durbin-Johnson, B., Kiesow, C., Haas, R., Buisktra, J. E., Klaus, H., Regan, L. A., Rocke, D. M., and Phinney, B. S.. (2019). Sex estimation using sexually dimorphic amelogenin protein fragments in human enamel. Journal of Archaeological Science 101(2019): 169180. DOI: https://doi.org/10.1016/j.jas.2018.08.011.CrossRefGoogle Scholar
Pererva, Evgeniy. (2017). Child and Adolescent Paleo-anthropological Materials of Late Sarmatian Time from the Burial Mounds of the Lower Volga Region. The Lower Volga Archaeological Bulletin 16(1): 83108.Google Scholar
Perry, M. (2005). Redefining Childhood through Bioarchaeology: Toward an Archaeological and Biological Understanding of Children in Antiquity. Archaeological Papers of the American Anthropological Association 15(1): 89111.10.1525/ap3a.2005.15.89CrossRefGoogle Scholar
Phenice, T. (1969). A Newly Developed Visual Method of Sexing the Os Pubis. American Journal of Physical Anthropology 30(2): 297301. DOI: https://doi.org/10.1002/ajpa.1330300214.CrossRefGoogle ScholarPubMed
Pokines, J., and J. Paz, De La. (2015). Recovery rates of human fetal skeletal remains using varying mesh sizes. Journal of Forensic Science 61: 184189.Google ScholarPubMed
Prowse, T., Saunders, S., Schwarcz, H., Garnsey, P., Macchiarelli, R., and Bondioli, L.. (2008). Isotopic and Dental Evidence for Infant and Young Child Feeding Practices in an Imperial Roman Skeletal Sample. American Journal of Physical Anthropology 137(3): 294308.10.1002/ajpa.20870CrossRefGoogle Scholar
Reid, D. J., and Dean, M. C.. (2006). Variation in Modern Human Enamel Formation Times. Journal of Human Evolution 50(3): 329346. DOI: https://doi.org/10.1016/j.jhevol.2005.09.003.CrossRefGoogle ScholarPubMed
Richards, M. P., Fuller, B. T., and Molleson, T. I.. (2006). Stable Isotope Palaeodietary Study of Humans and Fauna from the Multi-period (Iron Age, Viking and Late Medieval) Site of Newark Bay, Orkney. Journal of Archaeological Science 33(1): 122131. DOI: https://doi.org/10.1016/j.jas.2005.07.003.CrossRefGoogle Scholar
Risser, J. (1958). The Iliac Apophysis: An Invaluable Sign in the Management of Scoliosis. Clinical Orthopaedics 11(1958): 111119.Google ScholarPubMed
Roch, A. (1976). Growth after Puberty. In Fuchs, E. (Ed.). Youth in a Changing World: Cross-Cultural Perspectives on Adolescence. New York: Walter de Gruyter, pp. 817.Google Scholar
Rogers, T. (1999). A Visual Method of Determining the Sex of Skeletal Remains Using the Distal Humerus. Journal of Forensic Sciences 44(1): 5760.10.1520/JFS14411JCrossRefGoogle ScholarPubMed
Rogers, T. (2009). Sex Determination of Adolescent Skeletons Using the Distal Humerus. American Journal of Physical Anthropology: 140(1): 143148. DOI: https://doi.org/10.1002/ajpa.21060.CrossRefGoogle ScholarPubMed
Rogol, A., Roemmich, K., and Clark, P.. (2002). Growth at Puberty. Journal of Adolescent Health 31(6): 192200. DOI: https://doi.org/10.1016/S1054-139X(02)00485-8.CrossRefGoogle ScholarPubMed
Ruff, C. (2007). Body Size Prediction from Juvenile Skeletal Remains. American Journal of Physical Anthropology 133(1): 698716. DOI: https://doi.org/10.1002/ajpa.20568.CrossRefGoogle ScholarPubMed
Ruff, C., Garofalo, E., and Holmes, M.. (2013). Interpreting Skeletal Growth in the Past from a Functional and Physiological Perspectives. American Journal of Physical Anthropology 150(1): 2937. DOI: https://doi.org/10.1002/ajpa.22120.CrossRefGoogle Scholar
Sadler, K. (2017). In Goldstein, M. A. (Ed.), The MassGen Hospital for Children Adolescent Medicine Handbook, Second Edition. Cham: Springer. DOI 10.1007/978-3-319-45778-9_3, pp. 1926.CrossRefGoogle Scholar
Saggese, G., Baroncelli, G., and Bertelloni, S.. (2002). Puberty and Bone Development. Best Practice and Research Clinical Endocrinology and Metabolism 16(1): 5364.10.1053/beem.2001.0180CrossRefGoogle ScholarPubMed
Salahuddin, H., and Prowse, T.. (2023). Multi-tissue Analysis of Breastfeeding and Weaning in Iron Age (Seventh–Fourth c. BC) South Italy. Bioarchaeology International 7(3): 234264. DOI: https://doi.org/10.5744/bi.2023.0001.Google Scholar
Sanders, J. O., Qiu, X., Lu, X., Duren, D., Liu, R., Dang, D., Mendendez, M., Hansa, S., Weber, D., and Cooperman, D.. (2017). The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt. Nature: Scientific Reports 7(1): 16705. DOI: https://doi.org/10.1038/s41598-017-16996-w.Google ScholarPubMed
Santiago, R., Coasta, L., Vitral, R., Fraga, M., Bolognese, A., and Maia, L.. (2012). Cervical Vertebral Maturation as a Biological Indicator of Skeletal Maturity: A Systematic Review. Angle Orthodontist 82(6): 11231131. DOI: https://doi.org/10.2319/103111-673.1.CrossRefGoogle Scholar
Saunders, Shelley R. (2000). Subadult skeletons and growth-related studies. In: Katzenberg, M. Anne and Saunders, S. (Eds.), Biological Anthropology of the Human Skeleton. Wiley-Liss, pp. 120.Google Scholar
Saunders, S. (2008). Subadult skeletons and growth-related studies. In Katzenberg, M. and Saunders, S. (Eds.), Biological Anthropology of the Human Skeleton. Second Edition. New York: Wiley-Liss, pp. 117147.Google Scholar
Schaefer, M., Black, S., and Scheuer, J.. (2009). Juvenile Osteology. London: Academic Press.Google Scholar
Scheuer, L., and Black, S.. (2000). Developmental Juvenile Osteology. London: Academic Press.Google Scholar
Scheuer, L., and Black, S.. (2004). The Juvenile Skeleton. London: Elsevier Academic Press.Google Scholar
Schmeling, A., Schulz, R., Danner, B., and Rosing, F.. (2006). The Impact of Economic Progress and Modernization in Medicine on the Ossification of Hand and Wrist. International Journal of Legal Medicine 120 (2006): 121126.10.1007/s00414-005-0007-4CrossRefGoogle Scholar
Schmeling, A., Reisinger, W., Loreck, D., Vendura, K., Markus, W., and Geserick, G.. (2000). Effects of Ethnicity of Skeletal Maturation: Consequences for Forensic Age Estimation. International Journal of Legal Medicine 113 (2000): 253258.10.1007/s004149900102CrossRefGoogle Scholar
Schour, I., and Massler, M.. (1941). The Development of the Human Dentition. Journal of the American Dental Association 28 (1941): 11531160.Google Scholar
Schutkowski, H. (1993). Sex Determination of Infant and Juvenile Skeletons. I. Morphological Features. American Journal of Physical Anthropology 90(2): 199205. DOI: https://doi.org/10.1002/ajpa.1330900206.CrossRefGoogle Scholar
Scott, A., MacInnes, S., Hughes, N., Munkittrick, T., Harris, A., and Grimes, V.. (2023). A Bioarchaeological Exploration of Adolescent Males at the 18th Century Fortress of Louisbourg, Nova Scotia, Canada. Bioarchaeology International: Emerging Adolescence DOI: https://doi.org/10.5744/bi.2022.0007.CrossRefGoogle Scholar
Scott, A. B., and Betsinger, T. K.. (2021). Reproduction in the Past: A Bioarchaeological Exploration of the Fetus and Its Significance. In Han, S. and Tomori, C. (Eds.), The Routledge Handbook of Anthropology and Reproduction. DOI: https://doi.org/10.4324/9781003216452.CrossRefGoogle Scholar
Scott, R. M., and Halcrow, S.. (2017). Investigating Weaning Using Dental Microwear Analysis: A Review. Journal of Archaeological Science: Reports 11(2017): 111. DOI: https://doi.org/10.1016/j.jasrep.2016.11.026.Google Scholar
Shapland, F., and Lewis, M.. (2013). Brief Communication: A Proposed Osteological Method for the Estimation of Pubertal Stage in Human Skeletal Remains. American Journal of Physical Anthropology 151(2): 302310. DOI: https://doi.org/10.1002/ajpa/22268.CrossRefGoogle ScholarPubMed
Shapland, F., and Lewis, M.. (2014). Brief Communication: A Proposed Method for the Assessment of Pubertal Stage in Human Skeletal Remains Using Cervical Vertebrae Maturation. American Journal of Physical Anthropology 153(1): 144153. DOI: https://doi.org/10.1002/ajpa.22416.CrossRefGoogle Scholar
Skoglund, P., Stora, J., Gotherstrom, A., and Jakobsson, M.. (2013). Accurate Sex Identification of Ancient Human Remains Using DNA Shotgun Sequencing. Journal of Archaeological Science 40(12): 44774482. DOI: https://doi.org/10.1016/j.jas.2013.07.004.CrossRefGoogle Scholar
Smith, A., Reitsema, L., Fornaciari, A., and Sineo, L.. (2023). Exploring the Effects of Weaning Age on Adult Infectious Disease Mortality among 18th–19th Century Italians. American Journal of Human Biology DOI: https://doi.org/10.1002/ajhb.23864.CrossRefGoogle Scholar
Sofaer, J. (2007). Engendering Children, Engendering Archaeology. In Insoll, T. (Ed.) The Archaeology of Identities: A Reader, pp. 8796. New York: Routledge.Google Scholar
Sofaer, J. (2011). Towards a social bioarchaeology of age. In Agarwal, S., and Glencross, B. (Eds.), Social Bioarchaeology. Oxford: Blackwell, pp. 283311.10.1002/9781444390537.ch10CrossRefGoogle Scholar
Solari, A., Pessis, A. M., Martin, G., and Guidon, N.. (2020). Fetal Bioarchaeology: A Case-Study of a Premature Birth from Burial 2 in Toca do Enoque (Middle Holocene, Northeastern Brazil). Childhood in the Past 13(1): 819. DOI: https://doi.org/10.1080/17585716.2020.1738629.CrossRefGoogle Scholar
Spake, L., and Cardoso, H.. (2021). Interpolation of the Maresh Diaphyseal Length Data for Use in Quantitative Analyses of Growth. International Journal of Osteoarchaeology 31(2): 232242. DOI: https://doi.org/10.1002/oa.2942.CrossRefGoogle Scholar
Stewart, N., Molina, G., Issa, J., Yates, N., Sosovicka, M., Vieira, A., Line, S., Montgomery, J., and Gerlach, R.. (2016). The Identification of Peptides by nanoLC-MS/MS from Human Surface Tooth Enamel Following a Simple Acid Etch Extraction. Royal Society of Chemistry Advances 6(66): 6167361679. DOI: https://doi.org/10.1039/c6ra05120k.Google Scholar
Stewart, N., Gerlach, R., Gowland, R., Gron, K., and Montgomery, J.. (2017). Sex Determination of Human Remains from Peptides in Tooth Enamel. Proceedings of the National Academy of Sciences of the United States of America 114(52): 1364913654. DOI: https://doi.org/10.1073/pnas.1714926115.CrossRefGoogle ScholarPubMed
Sutter, R. (2003). Nonmetric Subadult Skeletal Sexing Traits: A Blind Test of the Accuracy of Eight Previously Proposed Methods Using Prehistoric Known-Sex Mummies for Northern Chile. Journal of Forensic Science 48(5): 927935.10.1520/JFS2002302CrossRefGoogle ScholarPubMed
Tanner, J. (1962). Growth at Adolescence, 2nd Edition. Oxford: Blackwell.Google Scholar
Tanner, J. (1986). Normal Growth and Techniques of Growth Assessment. Clinics in Endocrinology and Metabolism 15(3): 411451.10.1016/S0300-595X(86)80005-6CrossRefGoogle ScholarPubMed
Tanner, J., Healy, M., Goldstein, H., and Cameron, N.. (2001). Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 Method). London: Harcourt Publishers.Google Scholar
Tanner, J. M., Whitehouse, R. H., Cameron, N., Marshall, W. A., Healy, M. J. R., and Goldstien, H.. (1983). Assessment of skeletal maturity and prediction of adult height (TW2 method). Cambridge, MA: Academic.Google Scholar
Temple, D. H. (2020). The Mother–Infant Nexus Revealed by Linear Enamel Hypoplasia: Chronological and Contextual Evaluation of Developmental Stress Using Incremental Microstructures of Enamel in Late-Final Jomon Period Hunter Gatherers. In Gowland, R. and Halcrow, S. (Eds.), The Mother-Infant Nexus in Anthropology. Cham: Springer, pp. 6582. DOI: https://doi.org/10.1007/978-3-030-27393-4_4.CrossRefGoogle Scholar
Temple, D., and Edes, A.. (2022). Stress in Bioarchaeology, Epidemiology, and Evolutionary Medicine. In Plomp, K. A. et al. (Eds.), Paleopathology and Evolutionary Medicine. Oxford: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198849711.003.0014.Google Scholar
Thompson, J. L., Alfonso-Durruty, M. P., and Crandall, J. (Eds.). (2014). Tracing Childhood: Bioarchaeological Investigations of Early Lives in Antiquity. Gainesville, FL: University of Florida Press.10.5744/florida/9780813049830.001.0001CrossRefGoogle Scholar
Tierney, S., and Bird, J.. (2015). Molecular Sex Identification of Juvenile Skeletal Remains from an Irish Medieval Population Using Ancient DNA Analysis. Journal of Archaeological Science 62 (2015): 2738. DOI: https://doi.org/10.1016/j.jas.2015.06.016.CrossRefGoogle Scholar
Tiesler, Vera. (2014). Cultural frameworks for studying artificial cranial modifications: Physical embodiment, identity, age, and gender. In Tiesler, Vera (Ed.), The Bioarcheology of Artificial Cranial Modifications. New York: Springer.10.1007/978-1-4614-8760-9CrossRefGoogle Scholar
Ubelaker, D. (1989). Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Edition). Washington DC: Taraxcum.Google Scholar
Ullinger, J., Gregoricka, L., Bernardos, R., Reich, D., Langston, A.., Ferreri, P., and Ingram, B.. (2022). A Bioarchaeological Investigation of Fraternal Stillborn Twins from Tell el-Hesi. Near Eastern Archaeology 85(3): 228-237. DOI: https://doi.org/10.1086/720748.CrossRefGoogle Scholar
Uysal, T., Ramoglu, S., Basciftci, F., and Sari, Z.. (2006). Chronologic Age and Skeletal Maturation of the Cervicle Vertebrae and Hand-Wrist: Is There a Relationship? American Journal of Orthodontics and Dentofacial Orthopedics 130(5): 622628.10.1016/j.ajodo.2005.01.031CrossRefGoogle Scholar
Van de Vijver, K. (2019). Non-adult fracture patterns in Late and Post-Medieval Flanders, a Comparison of a Churchyard and a Church Assemblage. Childhood in the Past 12(2): 96116. DOI: 10.1080/17585716.2019.1638556.10.1080/17585716.2019.1638556CrossRefGoogle Scholar
Vlak, D., Roksandic, M., and Schallaci, M.. (2008). Greater Sciatic Notch as a Sex Indicator in Juveniles. American Journal of Physical Anthropology 137(3): 309315. DOI: https://doi.org/10.1002/ajpa.20875.CrossRefGoogle ScholarPubMed
Von Endt, D. W., and Ortner, D. J.. (1984). Experimental Effects of Bone Size and Temperature on Bone Diagenesis. Journal of Archaeological Science 11(3): 247253.10.1016/0305-4403(84)90005-0CrossRefGoogle Scholar
Waters-Rist, A. (2023). Stable Isotope Evidence for Breastfeeding and Weaning Variables in Past Populations: Infant and Child Feedings in Ancient Siberian Foragers. In Beasley, M., Somerville, A. D. (Eds.), Exploring Human Behaviour through Isotope Analysis: Interdisciplinary Contributions to Archaeology. Cham: Springer, pp. 3573. DOI: https://doi.org/10.1007/978-3-031-32268-6_3.CrossRefGoogle Scholar
Watts, R. (2011). Non-specific Indicators of Stress and Their Association with Age at Death in Medieval York: Using Stature and Vertebral Neural Canal Size to Examine the Effects of Stress Occurring During Different Periods of Development. International Journal of Osteoarchaeology 21(5): 568576.10.1002/oa.1158CrossRefGoogle Scholar
Wesp, J. (2017). Embodying Sex/Gender Systems in Bioarchaeological Research. In Agarwal, S. C. & Wesp, J. K. (Eds.), Exploring Sex and Gender in Bioarchaeology. Oxford: Blackwell, pp. 99126.Google Scholar
Wheeler, S., Williams, L., Beauchesne, P., and Dupras, T.. (2013). International Journal of Paleopathology. DOI: https://doi.org/10.1016/j.ijpp.2013.03.009.CrossRefGoogle Scholar
White, T., Black, M., and Folkens, P.. (2012). Human Osteology, Third Edition. Amsterdam: Elsevier Academic Press.Google Scholar
WHO Multicentre Growth Reference Study Group. (2006a). WHO Child Growth Standards based on Length/Height, Weight, and Age. Acta Paediatrica Supplement 450 (2006): 7685.Google Scholar
WHO Multicentre Growth Reference Study Group. (2006b). Assessment of Differences in Linear Growth among Populations in the WHO Multicenter Growth Reference Study. Acta Paediatrica Supplement 450 (2006): 5664.Google Scholar
Wilson, A. (1980). The Infancy of the History of Childhood: An Appraisal of Philippe Aries. History and Theory 19(2): 132153. www.jstor.org/stable/2504795.10.2307/2504795CrossRefGoogle Scholar
Wood, J., Milner, G., Harpending, H., and Weiss, K.. (1992). The Osteological Paradox: Problems of Inferring Prehistoric Health from Skeletal Samples. Current Anthropology 33(4): 343370.10.1086/204084CrossRefGoogle Scholar
Ziegler, E. (2007). Adverse Effects of Cow’s Milk in Infants. In Agostoni, C. and Brunser, O. (Eds.), Issues in Complementary Feeding. Nestlé Nutrition Institute Workshop Series Pediatric Program 60: 185199.Google Scholar
Zuckerman, M. K., and Crandall, J.. (2019). Reconsidering Sex and Gender in Relation to Health and Disease in Bioarchaeology. Journal of Anthropological Archaeology 54(2019): 161171. DOI: https://doi.org/10.1016/j.jaa.2019.04.001.CrossRefGoogle Scholar
Zuckerman, M., and Armelagos, G.. (2011). The Origins of Biocultural Dimensions in Bioarchaeology. In Agarwal, S. C. and Glencross, B. A. (Eds.), Social Bioarchaeology. Oxford: Blackwell, pp. 1543.Google Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this Element is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bioarchaeology of Infants and Children
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Bioarchaeology of Infants and Children
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Bioarchaeology of Infants and Children
Available formats
×