Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T20:57:50.275Z Has data issue: false hasContentIssue false

Introducing the Philosophy of Mathematical Practice

Published online by Cambridge University Press:  27 November 2024

Jessica Carter
Affiliation:
Aarhus Universitet, Denmark

Summary

This Element introduces a young field, the 'philosophy of mathematical practice'. We first offer a general characterisation of the approach to the philosophy of mathematics that takes mathematical practice seriously and contrast it with 'mathematical philosophy'. The latter is traced back to Bertrand Russell and the orientation referred to as 'scientific philosophy' that was active between 1850 and 1930. To give a better sense of the field, the Element further contains two examples of topics studied, that of mathematical structuralism and visual thinking in mathematics. These are in part presented from a methodological point of view, focussing on mathematics as an activity and questions related to how mathematics develops. In addition, the Element contains several examples from mathematics, both historical and contemporary , to illustrate and support the philosophical points.
Get access
Type
Element
Information
Online ISBN: 9781009076067
Publisher: Cambridge University Press
Print publication: 02 January 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberdein, A., Rittberg, C. J., and Tanswell, F. S. [2021]. ‘Virtue theory of mathematical practices: an introduction’. Synthese, 199(3–4): pp. 1016710180.CrossRefGoogle Scholar
Antonelli, A. [2001]. ‘Introduction’. Topoi, 20: pp. 13.CrossRefGoogle Scholar
Arana, A. [2008]. ‘Logical and semantic purity’. ProtoSociology, 25: pp. 3648.CrossRefGoogle Scholar
Arana, A. [2009]. ‘On formally measuring and eliminating extraneous notions in proofs.’ Philosophia Mathematica, 17(2): pp. 189207.CrossRefGoogle Scholar
Arana, A. [2022]. ‘Idéaux de preuve: explication et pureté’. In Arana, A. and Panza, M. (eds.), Précis de philosophie de la logique et des mathématiques, volume 2, chapter 9. Éditions de la Sorbonne, pp 387419.Google Scholar
Atiyah, M. [1978]. ‘The unity of mathematics’. The Bulletin of the London Mathematical Society, 10(1): pp. 6976.CrossRefGoogle Scholar
Avigad, J. [2021]. ‘Reliability of mathematical inference’. Synthese, 198: pp. 73777399.CrossRefGoogle Scholar
Avigad, J. and Mumma, J. [2009]. ‘A formal system for Euclid’s Elements’. Review of Symbolic Logic, 2: pp. 700768.CrossRefGoogle Scholar
Awodey, S. [2004]. ‘An answer to Hellman’s question: “Does category theory provide a framework for mathematical structuralism?” ’ Philosophia Mathematica, 12(1): pp. 5464.CrossRefGoogle Scholar
Barwise, J, and Etchemendy, J. [1996]. ‘Visual information and valid reasoning’. In Allwein, G. and Barwise, J. (eds.), Logical Reasoning with Diagrams, Oxford University Press, pp. 326.Google Scholar
Beck, M., Marchesi, G., Pixton, D. and Sabalka, L. [2002–18]. A First Course in Complex Analysis, Orthogonal Publishing. Found online at https://matthbeck.github.io/papers/complexorth.pdfGoogle Scholar
Benacerraf, P. [1965]. ‘What numbers could not be’. The Philosophical Review, 74: pp. 4773.CrossRefGoogle Scholar
Benacerraf, P. [1973]. ‘Mathematical truth’. The Journal of Philosophy, 70(19): pp. 661679.CrossRefGoogle Scholar
Benci, V., Bottazzi, E., and Di Nasso, M., [2015]. ‘Some applications of numerosities in measure theory’. Rendiconti Lincei-Matematica e Applicazioni, 26: pp. 3747.CrossRefGoogle Scholar
Benis-Sinaceur, H. [2018]. ‘Scientific Philosophy and Philosophical Science’. In Tahiri, H. (ed.), The Philosophers and Mathematics, Springer International Publishing, pp. 2566.CrossRefGoogle Scholar
Bertin, J. [2011]. Semiology of Graphics: diagrams, networks, maps. Translated by Berg, W. J., Esri Press.Google Scholar
Borel, A. [1998]. ‘Twenty-Five Years with Nicolas Bourbaki, (1949–1973)’. Notices of the American Mathematical Society, 45 (3): pp. 373380.Google Scholar
Bourbaki, N. [1950]. ‘The architecture of modern mathematics’. The American Mathematical Monthly, 57: pp. 221232.CrossRefGoogle Scholar
Bourbaki, N. [1960]. Éléments de mathématique – Livre I: Théorie des ensembles. Hermann.Google Scholar
Cantù, P. [2020]. ‘Grassmann’s concept structuralism’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism, Oxford University Press, pp. 2158.CrossRefGoogle Scholar
Cantù, P. [2023]. ‘What is axiomatics?Annals of Mathematics and Philosophy, 1: pp. 124.Google Scholar
Cartan, H. [1980]. ‘Nicholas Bourbaki and contemporary mathematics’. The Mathematical Intelligencer, 2: pp. 175180.CrossRefGoogle Scholar
Carter, J. [2008]. ‘Structuralism as a philosophy of mathematical practice’. Synthese, 163(2): pp. 119131.CrossRefGoogle Scholar
Carter, J. [2010]. ‘Diagrams and proofs in analysis’. International Studies in the Philosophy of Science, 24: pp. 114.CrossRefGoogle Scholar
Carter, J. [2014]. ‘Mathematics dealing with “hypothetical states of things”’. Philosophia Mathematica, 22(2): pp. 209230.CrossRefGoogle Scholar
Carter, J. [2018]. ‘Graph-algebras – faithful representations and mediating objects in mathematics’. Endeavour, 42: pp. 180188.CrossRefGoogle ScholarPubMed
Carter, J. [2019]. ‘The philosophy of mathematical practice – motivations, themes and prospects’. Philosophia Mathematica, 27: pp. 132.CrossRefGoogle Scholar
Carter, J. [2020]. ‘Logic of relations and diagrammatic reasoning: Structuralist elements in the work of Charles Sanders Peirce’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism, Oxford University Press, pp. 241272.CrossRefGoogle Scholar
Carter, J. [2021]. ‘“Free rides” in mathematics’. Synthese, 199(3–4): pp. 1047510498.CrossRefGoogle Scholar
Carter, J. [forthcoming]. ‘Variations of mathematical understanding’. Manuscript.Google Scholar
Catton, P. and Montelle, C. [2012]. ‘To diagram, to demonstrate: To do, to see, and to judge in Greek geometry’. Philosophia Mathematica, 20(1): pp. 2557.CrossRefGoogle Scholar
Cellucci, C. [2022]. The Making of Mathematics. Heuristic Philosophy of Mathematics, Synthese Library 448.Google Scholar
Corry, L. [2004]. Modern Algebra and the Rise of Mathematical Structures. Second revised edition, Birkhäuser.CrossRefGoogle Scholar
Corry, L. [2006]. ‘Axiomatics, empiricism, and Anschauung in Hilbert’s conception of geometry: Between arithmetic and general relativity’. In Ferreirós, J. and Gray, J. (eds.), The Architecture of Modern Mathematics, pp. 133156.CrossRefGoogle Scholar
De Toffoli, S. [2021]. ‘Groundwork for a fallibilist account of mathematics’. The Philosophical Quarterly, 71(4): pp. 823844.CrossRefGoogle Scholar
De Toffoli, S. [2022]. ‘What are mathematical diagrams?Synthese, 200(2). https://doi.org/10.1007/s11229-022-03553-w.CrossRefGoogle Scholar
De Toffoli, S. and Giardino, V. [2014]. ‘Forms and roles of diagrams in knot theory’. Erkenntnis, 79: pp. 829842.CrossRefGoogle Scholar
Easwaran, K., Hayek, H., Mancosu, P. and Oppy, G. [2023]. ‘Infinity’, The Stanford Encyclopedia of Philosophy (Winter Edition), Edward, N. Zalta and Nodelman, Uri (eds.), https://plato.stanford.edu/archives/win2023/entries/infinity/.Google Scholar
Epple, M. [2004]. ‘Knot invariants in Vienna and Princeton during the 1920s: Epistemic configurations of mathematical research’. Science in Context, 17: pp. 131164.CrossRefGoogle Scholar
Euler, L. [2000]. Foundations of differential calculus. Translated by , R. Blanton, Springer.CrossRefGoogle Scholar
Feferman, S. [1999]. ‘Does mathematics need new axioms?The American Mathematical Monthly, 106(2): pp. 99111.CrossRefGoogle Scholar
Ferreirós, J. [2007]. Labyrinth of Thought. A History of Set Theory and Its Role in Modern Mathematics (2nd ed.). Birkhäuser.Google Scholar
Ferreirós, J. [2016]. Mathematical Knowledge and the Interplay of Practices. Princeton University Press.CrossRefGoogle Scholar
Ferreirós, J. [2024]. ‘What are mathematical practices? The web-of-practices approach’. In Sriraman, B. (ed.), Handbook in the History and Philosophy of Mathematical Practice. Springer, pp. 27932819.CrossRefGoogle Scholar
Ferreirós, J. and Gray, J. [2006]. The Architecture of Modern Mathematics. Essays in History and Philosophy. Oxford University Press.Google Scholar
Ferreirós, J. and Reck, E. [2020]. ‘Dedekind’s mathematical structuralism: From Galois theory to numbers, sets, and functions’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism, Oxford University Press, pp. 5987.CrossRefGoogle Scholar
Friedman, M. [2012]. ‘Scientific Philosophy from Helmholtz to Carnap and Quine’. In Creath, R. (ed.), Rudolf Carnap and the Legacy of Logical Empiricism, Springer Netherlands, pp. 111.Google Scholar
Giaquinto, M. [2005]. ‘Mathematical activity’. In Mancosu, P., Jørgensen, K. and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics, Synthese Library, vol 327, Springer, pp. 7587.CrossRefGoogle Scholar
Giaquinto, M. [2007]. Visual Thinking in Mathematics. Oxford University Press.CrossRefGoogle Scholar
Giaquinto, M. [2020]. ‘The epistemology of visual thinking in mathematics,’ The Stanford Encyclopedia of Philosophy (Spring 2020 Edition), Zalta, Edward N. (ed.), https://plato.stanford.edu/archives/spr2020/entries/epistemology-visual-thinking/.Google Scholar
Giardino, V. [2017]. ‘The practical turn in philosophy of mathematics: A portrait of a young discipline’. Phenomenology and Mind, 12: pp. 1828.Google Scholar
Giardino, V. [2023]. ‘The practice of mathematics: Cognitive resources and conceptual content’. Topoi, 42(1): pp. 259270.CrossRefGoogle Scholar
Goodman, N. [1976]. Languages of Art. An Approach to a Theory of Symbols. 2nd ed., second printing. Hackett Publishing.CrossRefGoogle Scholar
Hafner, J. and Mancosu, P. [2005]. ‘The varieties of mathematical explanation’. In Mancosu, P., Jørgensen, K. F., and Pedersen, S. A. (eds.), Visualization, explanation and reasoning styles in mathematics. Springer, pp. 215250.CrossRefGoogle Scholar
Hafner, J. and Mancosu, P. [2008]. ‘Beyond unification’. In , Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press, pp. 151178.CrossRefGoogle Scholar
Hahn, H. [1980]. ‘The crisis in intuition’. In McGuiness, B. (ed.), Empiricism, Logic and Mathematics. Vienna Circle Collection, vol 13, Springer, pp. 73102.CrossRefGoogle Scholar
Hellman, G. and Shapiro, S. [2018]. Mathematical Structuralism. Cambridge University Press.CrossRefGoogle Scholar
Hilbert, D. [1900]. ‘Über den Zahlbegriff’. Jahresbericht der Deutschen Mathematiker-Vereinigung, 8: pp. 180183.Google Scholar
Hilbert, D. [1918]. ‘Axiomatic thought’. In Ewald, W. B. [2005]. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Volume 2. Clarendon Press, pp. 11071115.Google Scholar
Hilbert, D. [1950]. The Foundations of Geometry. Translated by Townsend, E. J.. The Open Court Publishing Company.Google Scholar
Johansen, M. W. and Pallivicini, J. L. [2022]. ‘Entering the valley of formalism: Trends and changes in mathematicians’ publication practice – 1885 to 2015’. Synthese, 200: p. 239.CrossRefGoogle Scholar
Jones, V. [1998]. ‘A credo of sorts’. In Dales, H. G. and Oliveri, G. (eds.), Truth in Mathematics. Clarendon Press, pp. 203214.CrossRefGoogle Scholar
Keränen, J. [2001]. ‘The identity problem for realist structuralism’. Philosophia Mathematica, 9(3): pp. 308330.CrossRefGoogle Scholar
Kitcher, P. [1984]. The nature of mathematical knowledge. Oxford University Press.Google Scholar
Knobloch, E. [2000]. ‘Analogy and the growth of mathematical knowledge’. In Grosholz, E. and Breger, H. (eds.), The Growth of Mathematical Knowledge. Synthese Library, vol. 289, Springer, pp. 295314.CrossRefGoogle Scholar
Korbmacher, J. and Schiemer, G. [2018]. ‘What are structural properties?Philosophia Mathematica, 26(3): pp. 295323.CrossRefGoogle Scholar
Krömer, R. [2007]. Tool and Object. A History and Philosophy of Category Theory. Birkhäuser.CrossRefGoogle Scholar
Lakatos, I. [1976]. Proofs and Refutations. Edited by Worrall, J. & Zahar, E.. Cambridge University Press.CrossRefGoogle Scholar
Landry, E. and Marquis, J.-P. [2005]. ‘Categories in context: Historical, foundational, and philosophical’. Philosophia Mathematica, 13(1): pp. 143.CrossRefGoogle Scholar
Lange, M. [2018]. ‘Mathematical explanations that are not proofs’. Erkenntnis, 83: pp. 12851302.CrossRefGoogle Scholar
Mac Lane, S. [1986]. Mathematics, Form and Function. Springer.CrossRefGoogle Scholar
Mancosu, P. [2005]. ‘Visualisation in logic and in mathematics’. In Mancosu, P., Jørgensen, K. F. and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer, pp. 1330.CrossRefGoogle Scholar
Mancosu, P. (ed.) [2008]. The Philosophy of Mathematical Practice. Oxford University Press.CrossRefGoogle Scholar
Mancosu, P. [2008a]. ‘Introduction’. In , Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press, pp. 121.CrossRefGoogle Scholar
Mancosu, P. [2008b]. ‘ Mathematical explanation: Why it matters’. In , Mancosu (ed.) 2008, ibid., pp. 134150.Google Scholar
Mancosu, P. [forthcoming]. The Wilderness of Infinity. Robert Grosseteste, William of Auvergne and Mathematical Infinity in the Thirteenth Century, forthcoming.Google Scholar
Mancosu, P., Poggiolesi, P. and Pincock, C. [2023]. ‘Mathematical explanation’, The Stanford Encyclopedia of Philosophy (Fall 2023 Edition), Edward N. Zalta and Uri Nodelman (eds.), https://plato.stanford.edu/archives/fall2023/entries/mathematics-explanation/.Google Scholar
Manders, K. [2008a]. ‘Diagram-based geometric practice’. In , Mancosu (ed.). The Philosophy of Mathematical Practice. Oxford University Press, pp. 6579.CrossRefGoogle Scholar
Manders, K. [2008b]. ‘The Euclidean Diagram (1995)’. In , Mancosu (ed.). The Philosophy of Mathematical Practice. Oxford University Press, pp. 80133.CrossRefGoogle Scholar
Mazur, B. [2021]. ‘Bridges between geometry and ... number theory’. Notes from a lecture given at the conference ‘Unifying Themes in Geometry’ at the Lake Como School of Advanced Studies, September 2021. Found online at https://people.math.harvard.edu/mazur/papers/2021.10.29.Unity.pdf Last check on March 25, 2024.Google Scholar
McLarty, C. [2006]. ‘Emmy Noether’s “set theoretic” topology: From Dedekind to the rise of functors’. In Ferreirós, J. and Gray, J. (eds.), The Architecture of Modern Mathematics, Oxford University Press, pp. 187208.CrossRefGoogle Scholar
McLarty, C. [2017]. ‘The two mathematical careers of Emmy Noether’. In Women in Mathematics. Springer International Publishing, pp. 231252.CrossRefGoogle Scholar
McLarty, C. [2020]. ‘Saunders Mac Lane: From Principia Mathematica through Göttingen to the working theory of structures’. In , Reck and , Schiemer (eds.), The Prehistory of Mathematical Structuralism. Oxford University Press, pp. 215257.CrossRefGoogle Scholar
Mumford, D. [1991]. ‘A foreword for non-mathematicians’. In Parikh, C.A.N.E. (ed.), The Unreal Life of Oscar Zariski. Academic Press, pp. xvxxvii.CrossRefGoogle Scholar
Mumma, J. [2012]. ‘Constructive geometrical reasoning and diagrams’. Synthese, 186 (1): pp. 103119.CrossRefGoogle Scholar
Netz, R. [1999]. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge University Press.CrossRefGoogle Scholar
Noether, E. [1921]. ‘Idealtheorie in Ringbereichen’. Mathematische Annalen, 83 (1–2): pp. 2466.CrossRefGoogle Scholar
Noether, E. [1927]. ‘Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern’. Mathematische Annalen, 96 (1): pp. 2661.CrossRefGoogle Scholar
Pambuccian, V. [2009]. ‘A Reverse analysis of the Sylvester-Gallai theorem’. Notre Dame Journal of Formal Logic, 50(3): pp. 245260.CrossRefGoogle Scholar
Panza, M. [2012]. ‘The twofold role of diagrams in Euclid’s plane geometry’. Synthese, 186 (1): pp. 55102.CrossRefGoogle Scholar
Panza, M. [2024]. ‘Platonism, de re, and (philosophy of) mathematical practice’. In , Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Springer Nature, pp. 23072335.CrossRefGoogle Scholar
Pasch, M. [1882/1926]. Vorlesungen über neuere Geometrie. Teubner.Google Scholar
Peirce, C. S. [1965–1967]. Collected Papers of Charles Sanders Peirce. Volume I–IV. (Third printing 1965–1967.) Edited by Charles Hartshorne and Paul Weiss, Belknap Press of Harvard University Press.Google Scholar
Preston, A., [2023]. ‘Analytic philosophy’. The Internet Encyclopedia of Philosophy. ISSN 2161-0002, https://iep.utm.edu/, accessed Feb. 13, 2024.Google Scholar
Raeburn, I. and Szymanski, W. [2004]. ‘Cuntz-Krieger algebras of infinite graphs and matrices’. Transactions of the American Mathematical Society, 356(1): pp. 3959.CrossRefGoogle Scholar
Reck, E. and Schiemer, G. (eds.) [2020]. The Prehistory of Mathematical Structuralism. Oxford University Press.CrossRefGoogle Scholar
Reck, E. and Schiemer, G. [2023]. ‘Structuralism in the philosophy of mathematics’. The Stanford Encyclopedia of Philosophy (Spring 2023 Edition), Zalta, Edward N. and Nodelman, Uri (eds.), https://plato.stanford.edu/archives/spr2023/entries/structuralism-mathematics/.Google Scholar
Richardson, A. [1997]. ‘Toward a history of scientific philosophy’. Perspectives on Science, 5(3): pp. 418451.CrossRefGoogle Scholar
Riemann, B. [1851]. ‘ Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse’. Reprinted in Weber, H. [1892]. Bernhard Riemann’s Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Teubner.Google Scholar
Russell, B. [1901]. ‘Recent work on the principles of mathematics’. International Monthly, 4: pp. 83101.Google Scholar
Russell, B. [1914/1918]. ‘On scientific method in philosophy’. Herbert Spencer lecture delivered at Oxford Nov 18, 1914. published at Clarendon Press. Reprinted in Mysticism and Logic and Other Essays (1918). Longmans, Green and Co, pp. 33–25.Google Scholar
Russell, B. [1919]. Introduction to Mathematical Philosophy. George Allen & Unwin.Google Scholar
Schlimm, D. [2013]. ‘Axioms in mathematical practice’. Philosophia Mathematica, 21: pp. 3792.CrossRefGoogle Scholar
Schlimm, D. [forthcoming]. Philosophy of Mathematical Notations. Cambridge University Press.Google Scholar
Shimojima, A. [2001]. ‘The graphic—linguistic distinction exploring alternatives’. Artificial Intelligence Review, 15: pp. 527.CrossRefGoogle Scholar
Shin, S.-J. [2002]. The Iconic Logic of Peirce’s Graphs. Masachusetts Institute of Technology Press.CrossRefGoogle Scholar
Sieg, W. [2020]. ‘The ways of Hilbert’s axiomatics: Structural and formal’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism. Oxford University Press, pp. 142165.CrossRefGoogle Scholar
Simpson, S. [2009]. Subsystems of Second-Order Arithmetic. Cambridge University Press.CrossRefGoogle Scholar
Sriraman, B. (ed.) [2024]. Handbook of the History and Philosophy of Mathematical Practice. Springer Nature.CrossRefGoogle Scholar
Starikova, I. [2010]. ‘Why do mathematicians need different ways of presenting mathematical objects: The case of Cayley graphs’. Topoi, 29: pp. 4151.CrossRefGoogle Scholar
Stein, H. [1988]. ‘Logos, logic, and logistiké: Some philosophical remarks on nineteenth-century transformation of mathematics’. In Aspray, W. and Kitcher, P. (eds.), History and Philosophy of Modern Mathematics. University of Minnesota Press, pp. 238259.Google Scholar
Steiner, M. [1978]. ‘Mathematical explanation’. Philosophical Studies, 34(2): pp. 135151.CrossRefGoogle Scholar
Stenning, K. [2000]. ‘Distinctions with differences: Comparing criteria for distinguishing diagrammatic from sentential systems’. In Anderson, M. P., Cheng, P. and Haarslev, V. (eds.), Diagrams 2000. Springer, pp. 132148.Google Scholar
Stjernfelt, F. [2007]. Diagrammatology: An Investigation on the Borderlines of Phenomenology, Ontology, and Semiotics Vol. 336. Springer Netherlands.Google Scholar
Tappenden, J. [2005]. ‘Proof style and understanding in mathematics I: Visualization, unification and axiom choice’. In Mancosu, P., Jørgensen, K. F. and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer, pp. 147213.CrossRefGoogle Scholar
Tappenden, J. [2006]. ‘The Riemannian background to Frege’s philosophy’. In , Ferreirós and , Gray (eds.), The Architecture of Modern Mathematics. Essays in History and Philosophy. Oxford University Press, pp. 97132.CrossRefGoogle Scholar
Van Bendegem, J. P. [2014]. ‘The impact of the philosophy of mathematical practice on the philosophy of mathematics’. In Soler, L., Zwart, S., Lynch, M. and Israel-Jost, V. (eds.), Science after the Practice Turn in the Philosophy, History, and Social Studies of Science. Routledge, pp. 215226.Google Scholar
Van der Waerden, B. [1935]. ‘Nachruf auf Emmy Noether’. Mathematische Annalen, 111(1): pp. 469476.CrossRefGoogle Scholar
Waszek, D. and Schlimm, D. [2021]. ‘Calculus as method or calculus as rules? Boole and Frege on the aims of a logical calculus’. Synthese, 199(5–6): pp. 1191311943.CrossRefGoogle Scholar
Weber, Z. [2013]. ‘Figures, formulae, and functors’. In Moktefi, A. and Shin, S-J. (eds.), Visual Reasoning with Diagrams. Studies in Universal Logic. Springer, pp. 153170.CrossRefGoogle Scholar
Weyl, H. [1995]. ‘Topology and abstract algebra as two roads of mathematical comprehension’. Translated by Shenitzer, Abe. American Mathematical Monthly, pp. 453–460 and 646–651.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Introducing the Philosophy of Mathematical Practice
  • Jessica Carter, Aarhus Universitet, Denmark
  • Online ISBN: 9781009076067
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Introducing the Philosophy of Mathematical Practice
  • Jessica Carter, Aarhus Universitet, Denmark
  • Online ISBN: 9781009076067
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Introducing the Philosophy of Mathematical Practice
  • Jessica Carter, Aarhus Universitet, Denmark
  • Online ISBN: 9781009076067
Available formats
×