The notion of 'stopping times' is a useful one in probability theory; it can be applied to both classical problems and fresh ones. This book presents this technique in the context of the directed set, stochastic processes indexed by directed sets, and many applications in probability, analysis and ergodic theory. Martingales and related processes are considered from several points of view. The book opens with a discussion of pointwise and stochastic convergence of processes, with concise proofs arising from the method of stochastic convergence. Later, the rewording of Vitali covering conditions in terms of stopping times clarifies connections with the theory of stochastic processes. Solutions are presented here for nearly all the open problems in the Krickeberg convergence theory for martingales and submartingales indexed by directed set. Another theme of the book is the unification of martingale and ergodic theorems.
"...will be extremely valuable to anybody doing research on directed processes. It is highly original. Most of the material has been published only in research journals so far....will be an indispensable and rich source of information previously scattered throughout many journals." U. Krengel, Mathematical Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.