The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpotency or solubility of a given group), algebro-geometric (identification of a group as an algebraic group), or model-theoretic (description of the definable sets). In this book, the general theory of stable groups is developed from the beginning (including a chapter on preliminaries in group theory and model theory), concentrating on the model- and group-theoretic aspects. It brings together the various extensions of the original finite rank theory under a unified perspective and provides a coherent exposition of the knowledge in the field.
‘ … a valuable addition to the model-theoretic literature’.
Dugald MacPherson Source: Bulletin of the London Mathematical Society
‘This book presents the state-of-the-art of the field …’
Source: Zentralblatt für Mathematik und ihre Grenzgebiete
‘… an original contribution to the theory.’
A. Baudisch Source: Niew Archief voor Wiskunde
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.