The authors analyze how the structure of a package determines its developmental complexity according to such measures as bug search times and documentation information content. The work presents arguments for why these issues impact solution cost and time more than does scalable performance. The final chapter explores the question of scalable execution and shows how scalable design relates to scalable execution. The book's focus is on program organization, which has received considerable attention in the broader software engineering community, where graphical description standards for modeling software structure and behavior have been developed by computer scientists. These discussions might be enriched by engineers who write scientific codes. This book aims to bring such scientific programmers into discussion with computer scientists. The authors do so by introducing object-oriented software design patterns in the context of scientific simulation.
'… it’s one of those books that I wish I’d read earlier in my programming career. I found many design patterns familiar simply because I’d seen them before in my own code. I’ll likely turn to this book in the future whenever I suspect a program design problem might be solved already.'
Source: Computing in Science and Engineering
'Scientific software must be consciously designed to grow with a research program and the hardware that supports the research program. And how to do that is precisely what these authors in this book have shown.'
Source: Scientific Programming
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.