The representation theory of reductive algebraic groups and related finite reductive groups is a subject of great topical interest and has many applications. The articles in this volume provide introductions to various aspects of the subject, including algebraic groups and Lie algebras, reflection groups, abelian and derived categories, the Deligne-Lusztig representation theory of finite reductive groups, Harish-Chandra theory and its generalisations, quantum groups, subgroup structure of algebraic groups, intersection cohomology, and Lusztig's conjectured character formula for irreducible representations in prime characteristic. The articles are carefully designed to reinforce one another, and are written by a team of distinguished authors: M. Broué, R. W. Carter, S. Donkin, M. Geck, J. C. Jantzen, B. Keller, M. W. Liebeck, G. Malle, J. C. Rickard and R. Rouquier. This volume as a whole should provide a very accessible introduction to an important, though technical, subject.
"It seems doubtful that a group of outstanding experts manages it to write survey articles which are carefully coordinated and support eachother. This book proves impressively the practicability of such a project..." Monatshefte fur Math
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.