Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:10:39.427Z Has data issue: false hasContentIssue false

Chapter 16 - Nephronophthisis Complex

from Section 6 - Cystic Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Genetic renal diseases account for an underestimated group of patients with chronic kidney disease (CKD) and end-stage kidney failure (ESKD). Nephronophthisis (NPH) and autosomal dominant tubulointerstitial kidney disease (ADTKD) are two forms of hereditary tubulointerstitial disease with variable genetic transmission, e.g., autosomal recessive in NPH and autosomal dominant in ADTKD, and different underlying mutations and pathophysiology, but similar renal morphology with non-specific tubular atrophy and interstitial fibrosis as the most prominent features. NPH is a ciliary disease belonging to the NPH-related ciliopathies (NPH-RC) with currently more than 90 known genes, affecting primarily children and adolescent patients where it represents the most common cause of ESKD. ADTKD affects mostly adults and can be divided into five major forms with specific associated gene mutations leading to misfolded proteins that confer altered tubular energy supply and protein trafficking. Both diseases are associated with a poor renal prognosis and lack specific treatment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braun, D. A., Hildebrandt, F.. Ciliopathies. Cold Spring Harb Perspect Biol. 2017;9.Google Scholar
Wolf, M. T.. Nephronophthisis and related syndromes. Curr Opin Pediatr. 2015;27:201–11.Google Scholar
McConnachie, D. J., Stow, J. L., Mallett, A. J.. Ciliopathies and the kidney: A review. Am J Kidney Dis. 2021;77:410–19.CrossRefGoogle ScholarPubMed
Konig, J., Kranz, B., Konig, S., et al. Phenotypic spectrum of children with nephronophthisis and related ciliopathies. Clin J Am Soc Nephrol. 2017;12:1974–83.Google Scholar
Eckardt, K. U., Alper, S. L., Antignac, C., et al. Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management--A KDIGO consensus report. Kidney Int. 2015;88:676–83.CrossRefGoogle ScholarPubMed
Devuyst, O., Olinger, E., Weber, S., et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers. 2019;5:60.Google Scholar
Ayasreh Fierro, N., Miquel Rodriguez, R., Matamala Gaston, A., et al. A review on autosomal dominant tubulointerstitial kidney disease. Nefrologia. 2017;37:235–43.Google ScholarPubMed
Bleyer, A. J., Kidd, K., Živná, M., Kmoch, S.. Autosomal dominant tubulointerstitial kidney disease. Adv Chronic Kidney Dis. 2017;24:8693.Google Scholar
Gast, C., Marinaki, A., Arenas-Hernandez, M., et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018;19:301.Google Scholar
Johnson, B. G., Dang, L. T., Marsh, G., et al. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J Clin Invest. 2017;127:3954–69.CrossRefGoogle ScholarPubMed
Kidd, K., Vylet’al, P., Schaeffer, C., et al. Genetic and clinical predictors of age of ESKD in individuals with autosomal dominant tubulointerstitial kidney disease due to UMOD mutations. Kidney Int Rep. 2020;5:1472–85.Google Scholar
Al-Bataineh, M. M., Sutton, T. A., Hughey, R. P.. Novel roles for mucin 1 in the kidney. Curr Opin Nephrol Hypertens. 2017;26:384–91.Google Scholar
Yamamoto, S., Kaimori, J. Y., Yoshimura, T., et al. Analysis of an ADTKD family with a novel frameshift mutation in MUC1 reveals characteristic features of mutant MUC1 protein. Nephrol Dial Transplant. 2017;32:2010–7.Google Scholar
Yu, S. M., Bleyer, A. J., Anis, K., et al. Autosomal dominant tubulointerstitial kidney disease due to MUC1 mutation. Am J Kidney Dis. 2018;71:495500.CrossRefGoogle ScholarPubMed
Knaup, K. X., Hackenbeck, T., Popp, B., et al. Biallelic expression of mucin-1 in autosomal dominant tubulointerstitial kidney disease: Implications for nongenetic disease recognition. J Am Soc Nephrol. 2018;29:2298–309.Google Scholar
Zivna, M., Kidd, K., Pristoupilova, A., et al. Noninvasive immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol. 2018;29:2418–31.Google Scholar
Živná, M., Kidd, K., Zaidan, M., et al. An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int. 2020;98:1589–604.Google Scholar
Schaeffer, C., Olinger, E.. Clinical and genetic spectra of kidney disease caused by REN mutations. Kidney Int. 2020;98:1397–400.Google Scholar
Desgrange, A., Heliot, C., Skovorodkin, I., et al. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development. 2017;144:4704–19.Google Scholar
Gimpel, C., Avni, E. F., Breysem, L., et al. Imaging of kidney cysts and cystic kidney diseases in children: An International Working Group Consensus Statement. Radiology. 2019;290:769–82.CrossRefGoogle ScholarPubMed
Izzi, C., Dordoni, C., Econimo, L., et al. Variable expressivity of HNF1B nephropathy, from renal cysts and diabetes to medullary sponge kidney through tubulo-interstitial kidney disease. Kidney Int Rep. 2020;5:2341–50.Google ScholarPubMed
Clissold, R. L., Hamilton, A. J., Hattersley, A. T., Ellard, S., Bingham, C.. HNF1B-associated renal and extra-renal disease – An expanding clinical spectrum. Nat Rev Nephrol. 2015;11:102–12.CrossRefGoogle ScholarPubMed
Kołbuc, M., Leßmeier, L., Salamon-Słowińska, D., et al. Hypomagnesemia is underestimated in children with HNF1B mutations. Pediatr Nephrol. 2020;35:1877–86.CrossRefGoogle ScholarPubMed
Bolar, N. A., Golzio, C., Zivna, M., et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet. 2016;99:174–87.Google Scholar
Espino-Hernandez, M., Palma Milla, C., Vara-Martin, J., Gonzalez-Granado, L. I.. De novo SEC61A1 mutation in autosomal dominant tubulo-interstitial kidney disease: Phenotype expansion and review of literature. J Paediatr Child Health. 2021;57:1305–7.Google Scholar
Reindl, J., Gröne, H.J., Wolf, G., Busch, M.. Uromodulin-related autosomal-dominant tubulointerstitial kidney disease-pathogenetic insights based on a case. Clin Kidney J. 2019;12:1729.Google Scholar
Vnučák, M., Graňák, K., Skálová, P., et al. Living-related kidney transplantation in a patient with juvenile nephronophthisis. Nephron. 2020;144:5838.Google Scholar
Živná, M., Kidd, K., Zaidan, M., et al. An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int. 2020;98:1589604.CrossRefGoogle ScholarPubMed
Cormican, S., Kennedy, C., Connaughton, D. M., et al. Renal transplant outcomes in patients with autosomal dominant tubulointerstitial kidney disease. Clin Transplant. 2020;34:e13783.Google Scholar
Knotek, M., Novak, R., Jaklin-Kekez, A., Mrzljak, A.. Combined liver-kidney transplantation for rare diseases. World J Hepatol. 2020;12:72237.Google Scholar
Dvela-Levitt, M., Shaw, J. L., Greka, A.. A rare kidney disease to cure them all? Towards mechanism-based therapies for proteinopathies. Trends Mol Med. 2021;27:393409.Google Scholar
Bleyer, A. J., Wolf, M. T., Kidd, K. O., et al. Autosomal dominant tubulointerstitial kidney disease: More than just HNF1β. Pediatr Nephrol. 2022;37:933–46.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nephronophthisis Complex
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781108907224.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nephronophthisis Complex
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781108907224.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nephronophthisis Complex
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781108907224.017
Available formats
×