This monograph introduces modern developments on the bound state problem in Schrödinger potential theory and its applications in particle physics. The Schrödinger equation provides a framework for dealing with energy levels of N-body systems. It was a cornerstone of the quantum revolution in physics of the twenties but re-emerged in the eighties as a powerful tool in the study of spectra and decay properties of mesons and baryons. This book begins with a detailed study of two-body problems, including discussion of general properties, level ordering problems, energy level spacing and decay properties. Following chapters treat relativistic generalisations, and the inverse problem. Finally, 3-body problems and N-body problems are dealt with. Applications in particle and atomic physics are considered, including quarkonium spectroscopy. The emphasis throughout is on showing how the theory can be tested by experiment. Many references are provided.
‘The book is clearly written, general results are illustrated by concrete applications to atomic and particle physics and the authors do not assume a knowledge of advanced mathematics. All that make this book very useful and valuable for theoretical and experimental particle and atomic physicists, especially for newcomers to the field.’
Robert Alicki Source: Zentralblatt für Mathematik
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.