The algebraic theory of automata was created by Schützenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathematics and theoretical computer science. This book presents to an audience of graduate students and researchers a modern account of the subject and its applications. The algebraic approach allows the theory to be developed in a general form of wide applicability. For example, number-theoretic results can now be more fully explored, in addition to applications in automata theory, codes and non-commutative algebra. Much material, for example, Schützenberger's theorem on polynomially bounded rational series, appears here for the first time in book form. This is an excellent resource and reference for all those working in algebra, theoretical computer science and their areas of overlap.
"This well-written volume is much more than a mere reprint. This comprehensive reference on rational series has been rewritten and new material has been added."
Michel Rigo, Mathematical Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.