Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T08:56:25.391Z Has data issue: false hasContentIssue false

19 - Premorbid structural abnormalities in schizophrenia

Published online by Cambridge University Press:  04 August 2010

Stephen M. Lawrie
Affiliation:
Royal Edinburgh Hospital, Edinburgh, UK
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Hundreds of structural brain imaging studies have demonstrated that there is a neuroanatomy of schizophrenia. This chapter reviews evidences, for premorbid abnormalities in patients with schizophrenia and related populations. Computed tomography (CT) demonstrated ventricular enlargement and a generalized loss of brain tissue, which may have conflated separate disease processes. Magnetic resonance imaging, which now requires a structural prefix (sMRI), has replicated these findings and convincingly shown additional volume deficits in the prefrontal and temporal lobes, as well as further decrements in the medial and superior temporal lobe. The Edinburgh High Risk Study examines subjects with two close relatives with schizophrenia. Researchers in the Melbourne High Risk Study have adopted a different but complementary approach. Evidence shows that obstetric complications (OCs) are related to small hippocampi in schizophrenia, possibly through gene-environment interaction. Evidence related to the hypothermic treatment of hypoxic brains is proved in reducing adverse neurodevelopmental outcomes.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvir, J. M. J., Woerner, M. G., Gunduz, H., Degreef, G., Lieberman, J. A. (1999). Obstretric complications predict treatment response in first-episode schizophrenia. Psychol Med 29: 621–627CrossRefGoogle Scholar
Ananth, H., Popescu, I., Critchley, H. D.et al. (2002). Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. Am J Psychiatry 159: 1497–1505CrossRefGoogle ScholarPubMed
Baare, W. F., Oel, C. J., Hulshoff Pol, H. E.et al. (2001). Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry 58: 33–40CrossRefGoogle Scholar
Bartley, A. J., Jones, D. W., Torrey, E. F., Zigun, J. R., Weinberger, D. R. (1993). Sylvian fissure asymmetries in monozygotic twins: a test of laterality in schizophrenia. Biol Psychiatry 34: 853–863CrossRefGoogle Scholar
Bridle, N., Pantelis, C., Wood, S. J.et al. (2002). Thalamic and caudate volumes in monozygotic twins discordant for schizophrenia. Aust N Z J Psychiatry 36: 347–354CrossRefGoogle Scholar
Buchsbaum, M. S., Yang, S., Hazlett, E.et al. (1997). Ventricular volume and asymmetry in schizotypal personality disorder and schizophrenia assessed with magnetic resonance imaging. Schizophr Res 27: 45–53CrossRefGoogle ScholarPubMed
Cannon, M., Jones, P. (1996). Schizophrenia. J Neurol Neurosurg Psychiatry 61: 604–613CrossRefGoogle Scholar
Cannon, T. D., Mednick, S. A., Parnas, J. (1989). Genetic and perinatal determinants of structural brain deficits in schizophrenia. Arch Gen Psychiatry 46: 883–889CrossRefGoogle Scholar
Cannon, T. D., Mednick, S. A., Parnas, J.et al. (1993). Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contributions of genetic and perinatal factors. Arch Gen Psychiatry 50: 551–564CrossRefGoogle ScholarPubMed
Cannon, T. D., Mednick, S. A., Parnas, J.et al. (1994). Developmental brain abnormalities in the offspring of schizophrenic mothers. II. Structural brain characteristics of schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 51: 955–962CrossRefGoogle ScholarPubMed
Cannon, T. D., Kaprio, J., Lönnqvist, J., Huttunen, M., Koskenvuo, M. (1998a). The genetic epidemiology of schizophrenia in a Finnish twin cohort. Arch Gen Psychiatry 55: 67–74CrossRefGoogle Scholar
Cannon, T. D., Erp, T. G., Huttunen, M.et al. (1998b). Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55: 1084–1091CrossRefGoogle Scholar
Cannon, T. D., Thompson, P. M., Erp, T. G.et al. (2002a). Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci USA 99: 3228–3233CrossRefGoogle Scholar
Cannon, T. D., Erp, T. G., Rosso, I. M.et al. (2002b). Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59: 35–41CrossRefGoogle Scholar
Chemerinski, E., Nopoulos, P. C., Crespo-Facorro, B., Andreasen, N. C., Magnotta, V. (2002). Morphology of the ventral frontal cortex in schizophrenia: relationship with social dysfunction. Biol Psychiatry 52: 1–8CrossRefGoogle ScholarPubMed
Copolov, D., Velakoulis, D., McGorry, P.et al. (2000). Neurobiological findings in early phase schizophrenia. Brain Res Rev 31: 157–165CrossRefGoogle ScholarPubMed
Dauphinais, I. D., DeLisi, L. E., Crow, T. J.et al. (1990). Reduction in temporal lobe size in siblings with schizophrenia: a magnetic resonance imaging study. Psychiatry Res 35: 137–147CrossRefGoogle ScholarPubMed
DeLisi, L. E., Goldin, L. R., Hamovit, J. R.et al. (1986). A family study of the association of increased ventricular size with schizophrenia. Arch Gen Psychiatry 43: 148–153CrossRefGoogle ScholarPubMed
DeLisi, L. E., Dauphinais, I. D., Gershon, E. S. (1988). Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophr Bull 14: 185–191CrossRefGoogle ScholarPubMed
DeQuardo, J. R., Goldman, M., Tandon, R. (1996). VBR in schizophrenia: relationship to family history of psychosis and season of birth. Schizophr Res 20: 275–285CrossRefGoogle ScholarPubMed
Dickey, C. C., McCarley, R. W., Voglmaier, M. M.et al. (1999). Schizotypal personality disorder and MRI abnormalities of temporal lobe gray matter. Biol Psychiatry 45: 1393–1402CrossRefGoogle ScholarPubMed
Dickey, C. C., Shenton, M. E., Hirayasu, Y.et al. (2000). Large CSF volume not attributable to ventricular volume in schizotypal personality disorder. Am J Psychiatry 157: 48–54CrossRefGoogle Scholar
Downhill, J. E., Buchsbaum, M. S., Hazlett, E. A.et al. (2001). Temporal lobe volume determined by magnetic resonance imaging in schizotypal personality disorder and schizophrenia. Schizophr Res 48: 187–199CrossRefGoogle Scholar
Erel, O., Cannon, T. D., Hollister, J. M., Mednick, S. A., Parnas, J. (1991). Ventricular enlargement and premorbid deficits in school-occupational attainment in a high risk sample. Schizophr Res 4: 49–52CrossRefGoogle Scholar
Falkai, P., Honer, W. G., Alfter, D.et al. (2002). The temporal lobe in schizophrenia from uni- and multiply affected families. Neurosci Lett 325: 25–28CrossRefGoogle ScholarPubMed
Fannon, D., Tennakoon, L., Sumich, A.et al. (2000). Third ventricle enlargement and developmental delay in first-episode psychosis: preliminary findings. Br J Psychiatry 177: 354–359CrossRefGoogle ScholarPubMed
Fernandez, T., Yan, W. L., Hamburger, S.et al. (1999). Apolipoprotine E alleles in childhood-onset schizophrenia. Am J Med Genet 88: 211–2133.0.CO;2-M>CrossRefGoogle Scholar
Frangou, S., Sharma, T., Sigmudsson, T.et al. (1997). The Maudsley Family Study 4. Normal planum temporale asymmetry in familial schizophrenia. Br J Psychiatry 170: 328–333CrossRefGoogle ScholarPubMed
Gur, R. E., Turetsky, B. I., Bilker, W. B., Gur, R. C. (1999). Reduced gray matter volume in schizophrenia. Arch Gen Psychiatry 56: 905–911CrossRefGoogle Scholar
Gur, R. E., Turetsky, B. I., Cowell, P. E.et al. (2000). Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769–775CrossRefGoogle Scholar
Harris, J. G., Young, D. A., Rojas, D. C.et al. (2002). Increased hippocampal volume in schizophrenics' parents with ancestral history of schizophrenia. Schizophr Res 55: 11–17CrossRefGoogle ScholarPubMed
Hata, T., Kunugi, H., Nanko, S., Fukuda, R., Kaminaga, T. (2002). Possible effect of the APOE e4 allele on the hippocampal volume and asymmetry in schizophrenia. Am J Med Genet Neuropsychiatr Genet 114: 641–642CrossRefGoogle Scholar
Honer, W. G., Bassett, A. S., Squires-Wheeler, E.et al. (1995). The temporal lobes, reversed asymmetry and the genetics of schizophrenia. Neuroreport 7: 221–224CrossRefGoogle ScholarPubMed
Hulshoff Pol, H. E., Hoek, H. W., Susser, E.et al. (2000). Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 157: 1170–1172CrossRefGoogle Scholar
Job, D. E., Whalley, H. C., McConnell, S.et al. (2002). Structural gray matter differences between first-episode schizophrenics and normal controls on voxel-based morphometry. Neuroimage 17: 880–889CrossRefGoogle ScholarPubMed
Job, D. E., Whalley, H. C., Glabus, M., Johnstone, E. C., Lawrie, S. M. (2003). Voxel-based morphometry of grey matter reductions in subjects at high risk of schizophrenia. Schizophr Res 64: 1–13CrossRefGoogle ScholarPubMed
Johnstone, E. C., Owens, D. G., Bydder, G. M.et al. (1989). The spectrum of structural brain changes in schizophrenia: age of onset as a predictor of cognitive and clinical impairments and their cerebral correlates. Psychol Med 19: 91–103CrossRefGoogle ScholarPubMed
Johnstone, E. C., Cosway, R., Lawrie, S. M. (2002). Distinguishing characteristics of subjects with good and poor early outcome in the Edinburgh High Risk Study. Br J Psychiatry 181: S26–S29CrossRefGoogle Scholar
Jones, P. B., Harvey, I., Lewis, S. W.et al. (1994). Cerebral ventricle dimensions as risk factors for schizophrenia and affective psychosis: an epidemiological approach to analysis. Psychol Med 24: 995–1011CrossRefGoogle Scholar
Keshavan, M. S., Montrose, D. M., Pierri, J. N.et al. (1997). Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 21: 1285–1295CrossRefGoogle ScholarPubMed
Keshavan, M. S., Dick, E., Mankowski, I.et al. (2002). Decreased left amygddala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 58: 173–183CrossRefGoogle ScholarPubMed
Konick, L. C., Friedman, L. (2001). Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 49: 28–38CrossRefGoogle Scholar
Kunugi, H., Hattori, M., Nanko, S.et al. (1999). Dinucleotide repeat polymorphism in the neurotrophin-3 gene and hippocampal volume in psychoses. Schizophr Res 37: 271–273CrossRefGoogle ScholarPubMed
Lawrie, S. M., Abukmeil, S. S. (1998). Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110–120CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H., Kestelman, J. N.et al. (1999). Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353: 30–33CrossRefGoogle ScholarPubMed
Lawrie, S. M., Adams, C. E., Thornley, B., Joy, C. (2000). Comprehensiveness of systematic review: update. Br J Psychiatry 176: 396–401CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H. C., Abukmeil, S. S.et al. (2001). Brain structure, genetic liability and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 49: 811–823CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H. C., Abukmeil, S. S.et al. (2002). Temporal lobe volume changes in subjects at high risk of schizophrenia with psychotic symptoms. Br J Psychiatry 181: 138–143CrossRefGoogle Scholar
Levitt, J. J., McCarley, R. W., Dickey, C. C.et al. (2002). MRI study of caudate nucleus volume and its cognitive correlates in neuroleptic-naive patients with schizotypal personality disorder. Am J Psychiatry 159: 1190–1197CrossRefGoogle ScholarPubMed
Lewis, S. W. (1990). Computerised tomography in schizophrenia 15 years on. Br J Psychiatry 157: 16–24Google Scholar
Lim, K. O., Beal, D. M., Harvey, R. L. Jr.et al. (1995). Brain dysmorphology in adults with congenital rubella plus schizophrenia-like symptoms. Biol Psychiatry 37: 764–776CrossRefGoogle Scholar
McDonald, C., Grech, A., Toulopoulou, T.et al. (2002). Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet (Neuropsychiatric Genetics) 114: 616–625CrossRefGoogle ScholarPubMed
McGuffin, P., Asherson, P., Owen, M., Farmer, A. (1994). The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia?Br J Psychiatry 164: 593–599CrossRefGoogle ScholarPubMed
McNeil, T. F., Cantor-Graae, E., Weinberger, D. R. (2000). Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157: 203–212CrossRefGoogle Scholar
Meyer-Lindenberg, A., Japee, S., Verchinski, B.et al. (2001). Structural MRI abnormalities in schizophrenic patients and their unaffected siblings: voxel-based morphometry. Neuroimage 13: S217Google Scholar
Mourot, A., d'Amato, T., Rochet, T.et al. (1997). Cerebral investigation of healthy siblings of schizophrenics. Eur Psychiatry 12: 273–278CrossRefGoogle ScholarPubMed
Narr, K. L., Erp, T. G., Cannon, T. D.et al. (2002). A twin study of genetic contributions to hippocampal morphology in schizophrenia. Neurobiol Dis 11: 83–95CrossRefGoogle Scholar
Nelson, M. D., Saykin, A. J., Flashman, L. A., Riordan, H. J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55: 433–440CrossRefGoogle ScholarPubMed
Noga, J. T., Bartley, A. J., Jones, D. W., Torrey, E. F., Weinberger, D. R. (1996). Cortical gyral anatomy and gross brain dimensions in monozygotic twins discordant for schizophrenia. Schizophr Res 22: 27–40CrossRefGoogle Scholar
O'Driscoll, G. A., Florencio, P. S., Gagnon, D.et al. (2001). Amygdala–hippocampal volume and verbal memory in first-degree relatives of schizophrenic patients. Psychiatry Res Neuroimaging 107: 75–85CrossRefGoogle ScholarPubMed
Owens, D. G., Johnstone, E. C., Crow, T. J.et al. (1985). Lateral ventricular size in schizophrenia: relationship to the disease process and its clinical manifestations. Psychol Med 15: 27–41CrossRefGoogle ScholarPubMed
Paillere-Martinot, M., Caclin, A., Artiges, E.et al. (2001). Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophr Res 50: 19–26CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., Suckling, J.et al. (2000). Left medial temporal volume reduction occurs during the transition from high-risk to first-episode psychosis. Schizophr Res 41: 35CrossRefGoogle Scholar
Pantelis, C., Velakoulis, D., McGorry, P. D.et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361: 281–288CrossRefGoogle ScholarPubMed
Phillips, L. J., Velakoulis, D., Pantelis, C.et al. (2002). Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophr Res 58: 145–158CrossRefGoogle ScholarPubMed
Raz, S., Raz, N. (1990). Structural brain abnormalities in the major psychoses: a quantitative review of the evidence from computerized imaging. Psychol Bull 108: 93–108CrossRefGoogle ScholarPubMed
Rees, S., Breen, S., Loeliger, M., McCrabb, G., Harding, R. (1999). Hypoxemia near mid-gestation has long-term effects on fetal brain development. J Neuropathol Exp Neurol 58: 932–945CrossRefGoogle ScholarPubMed
Reveley, A. M., Reveley, M. A., Clifford, C. A., Murray, R. M. (1982). Cerebral ventricular size in twins discordant for schizophrenia. Lancet : 540–541CrossRefGoogle Scholar
Reveley, A. M., Reveley, M. A., Murray, R. M. (1984). Cerebral ventricular enlargement in non-genetic schizophrenia: a controlled twin study. Br J Psychiatry 144: 89–93CrossRefGoogle ScholarPubMed
Roy, M. A., Flaum, M. A., Arndt, S. V., Crowe, R. R., Andreasen, N. C. (1994). Magnetic resonance imaging in familial versus sporadic cases of schizophrenia. Psychiatry Res 54: 25–36CrossRefGoogle ScholarPubMed
Sacchetti, E., Calzeroni, A., Vita, A.et al. (1992). The brain damage hypothesis of the seasonality of births in schizophrenia and major affective disorders: evidence from computerised tomography. Br J Psychiatry 160: 390–397CrossRefGoogle ScholarPubMed
Sanderson, T. L., Doody, G. A., Best, J., Owens, D. G. C., Johnstone, E. C. (2001). Correlations between clinical and historical variables and cerebral structural variables in people with mild intellectual disability and schizophrenia. J Intellect Disabil Res 45: 89–98CrossRefGoogle Scholar
Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57: 925–935CrossRefGoogle ScholarPubMed
Schreiber, H., Baur-Seack, K., Kornhuber, H. H.et al. (1999). Brain morphology in adolescents at genetic risk for schizophrenia assessed by qualitative and quantitative magnetic resonance imaging. Schizophr Res 40: 81–84CrossRefGoogle ScholarPubMed
Schulsinger, F., Parnas, J., Petersen, E. T.et al. (1984). Cerebral ventricular size in the offspring of schizophrenic mothers. Arch Gen Psychiatry 41: 602–606CrossRefGoogle ScholarPubMed
Schwarzkopf, S. B., Nasrallah, H. A., Olson, S. C., Bogerts, B., McLaughlin, J. A., Mitra, T. (1991). Family history and brain morphology in schizophrenia: an MRI study. Psychiatry Res 40: 49–60CrossRefGoogle Scholar
Seidman, L. J., Faraone, S. V., Goldstein, J. M.et al. (1997). Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients: a pilot magnetic resonance imaging study. Am J Med Genet 74: 507–5143.0.CO;2-G>CrossRefGoogle ScholarPubMed
Seidman, L. J., Faraone, S. V., Goldstein, J. M.et al. (1999). Thalamic and amygdala-hippocampal volume reductions in first-degree relatives of patients with schizophrenia: an MRI-based morphometric analysis. Biol Psychiatry 46: 941–954CrossRefGoogle ScholarPubMed
Seidman, L. J., Faraone, S. V., Goldstein, J. M.et al. (2002). Left hippocampal volume as a vulnerability indicator for schizophrenia. Arch Gen Psychiatry 59: 839–849CrossRefGoogle Scholar
Shapleske, J., Rossell, S. L., Woodruff, P. W. R., David, A. S. (1999). The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Rev 29: 26–49CrossRefGoogle ScholarPubMed
Sharma, T., Lancaster, E., Lee, D.et al. (1998). Brain changes in schizophrenia. Volumetric MRI study of families multiply affected with schizophrenia: the Maudsley Family Study 5. Br J Psychiatry 173: 132–138CrossRefGoogle ScholarPubMed
Sharma, T., Lancaster, E., Sigmundsson, T.et al. (1999). Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives: The Maudsley Family Study. Schizophr Res 40: 111–120CrossRefGoogle ScholarPubMed
Shihabuddin, L., Silverman, J. M., Buchsbaum, M. S.et al. (1996). Ventricular enlargement associated with linkage marker for schizophrenia-related disorders in one pedigree. Mol Psychiatry 1: 215–222Google ScholarPubMed
Siever, L. J., Rotter, M., Losonczy, M.et al. (1995). Lateral ventricular enlargement in schizotypal personality disorder. Psychiatry Res 57: 109–118CrossRefGoogle ScholarPubMed
Sigmundsson, T., Suckling, J., Maier, M.et al. (2001). Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 158: 234–243CrossRefGoogle ScholarPubMed
Silverman, J. M., Smith, C. J., Guo, S. L.et al. (1998). Lateral ventricular enlargement in schizophrenic probands and their siblings with schizophrenia-related disorders. Biol Psychiatry 43: 97–106CrossRefGoogle ScholarPubMed
Silverton, L., Finello, K. M., Schulsinger, F., Mednick, S. A. (1985). Low birth weight and ventricular enlargement in a high-risk sample. J Abnorm Psychol 94: 405–409CrossRefGoogle Scholar
Silverton, L., Mednick, S. A., Schulsinger, F., Parnas, J., Harrington, M. E. (1988a). Genetic risk for schizophrenia, birthweight, and cerebral ventricular enlargement. J Abnorm Psychol 97: 496–498CrossRefGoogle Scholar
Silverton, L., Mednick, S. A., Harrington, M. E. (1988b). Birthweight, schizophrenia and ventricular enlargement in a high-risk sample. Psychiatry 51: 272–280CrossRefGoogle Scholar
Sommer, I., Aleman, A., Ramsey, N., Bouma, A., Kahn, R. (2001). Handedness, language lateralisation and anatomical asymmetry in schizophrenia. Meta-analysis. Br J Psychiatry 178: 344–351CrossRefGoogle ScholarPubMed
Staal, W. G., Hulshoff, Pol H. E., Schnack, H., Schot, A. C., Kahn, R. S. (1998). Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 155: 1784–1786CrossRefGoogle ScholarPubMed
Staal, W. G., Hulshoff Pol, H. E., Schnack, H. G.et al. (2000). Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 157: 416–421CrossRefGoogle ScholarPubMed
Steel, R., Whalley, H., Miller, P.et al. (2002). Structural MRI of the brain in presumed carriers of genes for schizophrenia, their affected and unaffected siblings. J Neurol Neurosurg Psychiatry 72: 455–458Google ScholarPubMed
Stefanis, N., Frangou, S., Yakeley, J.et al. (1999). Hippocampal volume reduction in schizophrenia: effects of genetic risk and pregnancy and birth complications. Biol Psychiatry 46: 697–702CrossRefGoogle ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322: 789–794CrossRefGoogle Scholar
Erp, T. G. M., Saleh, P. A., Rosso, I. M.et al. (2002). Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159: 1514–1520CrossRefGoogle ScholarPubMed
Horn, J. D., McManus, I. C. (1992). Ventricular enlargement in schizophrenia: a meta-analysis of studies of the ventricle: brain ratio (VBR). Br J Psychiatry 160: 687–697CrossRefGoogle Scholar
Vita, A., Dieci, M., Giobbio, G. M.et al. (1994). A reconsideration of the relationship between cerebral structural abnormalities and family history of schizophrenia. Psychiatry Res 53: 41–55CrossRefGoogle ScholarPubMed
Waldo, M. C., Cawthra, E., Adler, L. E.et al. (1994). Auditory sensory gating, hippocampal volume, and catecholamine metabolism in schizophrenics and their siblings. Schizophr Res 12: 93–106CrossRefGoogle ScholarPubMed
Walker, E. F., Lewine, R. R., Neumann, C. (1996). Childhood behavioral characteristics and adult brain morphology in schizophrenia. Schizophr Res 22: 93–101CrossRefGoogle Scholar
Ward, K. E., Friedman, L., Wise, A., Schulz, S. C. (1996). Meta-analysis of brain and cranial size in schizophrenia. Schizophr Res 22: 197–213CrossRefGoogle Scholar
Weinberger, D. R., DeLisi, L. E., Neophytides, A. N., Wyatt, R. J. (1981). Familial aspects of CT scan abnormalities in chronic schizophrenic patients. Psychiatry Res 4: 65–71CrossRefGoogle ScholarPubMed
Woodruff, P. W. R., McManus, I. C., David, A. S. (1995). Meta-analysis of corpus callosum size in schizophrenia. J Neurol Neurosurg Psychiatry 58: 457–461CrossRefGoogle Scholar
Woods, B. T. (1998). Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155: 1661–1670CrossRefGoogle Scholar
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W.et al. (2000). Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16–25CrossRefGoogle Scholar
Zorrilla, L. T. E., Cannon, T. D., Kronenberg, S.et al. (1997). Structural brain abnormalities in schizophrenia: a family study. Biol Psychiatry 42: 1080–1986CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×