The introduction of numerical methods, particularly finite element (FE) analysis, represents a significant advance in metal forming operations. Numerical methods are used increasingly to optimize product design and deal with problems in metal forging, rolling, and extrusion processes. Metal Forming Analysis, first published in 2001, describes the most important numerical techniques for simulating metal forming operations. The first part of the book describes principles and procedures and includes numerous examples and worked problems. The remaining chapters focus on applications of numerical analysis to specific forming operations. Most of these results are drawn from the authors' research in the areas of metal testing, sheet metal forming, forging, extrusion, and similar operations. Sufficient information is presented so that readers can understand the nonlinear finite element method as applied to forming problems without a prior background in structural finite element analysis. Graduate students, researchers, and practising engineers will welcome this thorough reference to state-of-the-art numerical methods used in metal forming analysis.
‘… describes the latest and most important numerical techniques for simulating metal forming operations.‘
Source: Advanced Materials & Processes
'The authors must be applauded for undertaking the task of writing this book that packs a great amount of useful and reliable information between its covers.'
Source: Current Engineering Practice
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.