Skip to main content Accessibility help
×
  • Cited by 46
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      07 October 2011
      13 September 1984
      ISBN:
      9780511897221
      9780521090339
      Dimensions:
      Weight & Pages:
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.32kg, 216 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp makes fewer demands on the reader's background in probability theory than is usual. He gives a fairly full discussion of the measure theory and functional analysis needed for martingale theory, and describes the role of Brownian motion and the Poisson process as paradigm examples in the construction of abstract stochastic integrals. An appendix provides the reader with a glimpse of very recent developments in non-commutative integration theory which are of considerable importance in quantum mechanics. Thus equipped, the reader will have the necessary background to understand research in stochastic analysis. As a textbook, this account will be ideally suited to beginning graduate students in probability theory, and indeed it has evolved from such courses given at Hull University. It should also be of interest to pure mathematicians looking for a careful, yet concise introduction to martingale theory, and to physicists, engineers and economists who are finding that applications to their disciplines are becoming increasingly important.

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.