This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields.
Review of the hardback:‘… a worthwhile and successful attempt to introduce the ideas of Sophus Lie.’
H. Boseck - Zentralblatt für Mathematik
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.