Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:34:00.877Z Has data issue: false hasContentIssue false

50 - Oocyte and Embryo Freezing

from PART III - ASSISTED REPRODUCTION

Published online by Cambridge University Press:  04 August 2010

Botros R. M. B. Rizk
Affiliation:
University of South Alabama
Juan A. Garcia-Velasco
Affiliation:
Rey Juan Carlos University School of Medicine,
Hassan N. Sallam
Affiliation:
University of Alexandria School of Medicine
Antonis Makrigiannakis
Affiliation:
University of Crete
Get access

Summary

Reproductive cryopreservation has recently gained an increasing importance in in vitro fertilization (IVF) programs throughout the world and is probably going to play a significant role over the next few years.

The main vantages of this technique include storage for future use without repeating ovarian stimulation, chance of fertility for neoplastic patients who are going to receive chemotherapy, low risk of multiple pregnancies by reducing the number of fresh embryos transferred, and low risk, without canceling the cycle, of developing ovarian hyperstimulation syndrome (1), which still represents the most serious complication of the superovulation regimes.

Since the first pregnancy and the first birth achieved from human embryo cryopreservation were reported (2, 3), several methods have been developed to make cryopreservation, thawing, and transfer of human embryos more safe, embryo freezing being now routinely used in many IVF programs all over the world.

However, the debate on the safety of cryopreservation is still open, and many authors have expressed their concerns about it, especially after the alarming report in 1995 of morphological and development alteration in mice born from frozen-thawed embryos (4). Moreover, many mutations may be difficult to evaluate since they can have minimal phenotypic effects, with respect viability and macromorphological appearance of offsprings, thus altering behavior and cognitive functions through biochemical and microstructular changes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wada, I., Matson, P.L., Troup, S.A. et al. Does elective cryopreservation of all embryos from women at risk of ovarian hyperstimulation reduce the incidence of the condition?Br. J. Obstet. Gynaecol. 1993; 100: 265–9.CrossRefGoogle ScholarPubMed
Trounson, , Mohr, L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 1983; 305: 707–9.CrossRefGoogle ScholarPubMed
Zeilmaker, G.H., Alberta, A.T., Gent, , I. et al. Two pregnancies following transfer of intact frozen–thawed embryos. Fertil. Steril. 1984; 42: 293–6.CrossRefGoogle ScholarPubMed
Dulioust, E., Toyama, K., Busnel, M.C., et al. Long term effects of embryo freezing in mice. Proc. Natl. Acad. Sci. USA 1995; 92: 589–93.CrossRefGoogle ScholarPubMed
Whittingham, D.G., Leibo, S.P., Mazur, P. Survival of mouse embryos frozen to −196° and −269°C. Science 1972; 178: 411–14.CrossRefGoogle ScholarPubMed
Edwards, R.G., Steptoe, P.C. Matter of Life. Hutchinson, London, UK; 1980.Google Scholar
Kahn, J.A., During, V., Sunde, A., Sordal, T., Molne, K. The efficacy and efficiency of an in-vitro fertilization programme including embryo cryopreservation: a cohort study. Hum. Reprod. 1993; 8: 247–52.CrossRefGoogle ScholarPubMed
Wang, X.J., Ledger, W., Payne, D., Jeffrey, R.Matthews, C.D. The contribution of embryo cryopreservation to in-vitro fertilization/gamete intra-fallopian transfer: 8 years experience. Hum. Reprod. 1994; 9: 103–9.CrossRefGoogle ScholarPubMed
Voorhis, B.J., Syrop, C.H., Allen, B.D., Sparks, A.E., Stovall, D.W. The efficacy and cost effectiveness of embryo cryopreservation compared with other assisted reproductive techniques. Fertil. Steril. 1995; 64: 647–50.CrossRefGoogle ScholarPubMed
Mandelbaum, , Belaisch-Allart, J., Junca, A.M., Antoine, J.M., Plachot, M., Alvarez, S., et al. Cryopreservation in human assisted reproduction is now routine for embryos but remains a research procedure for oocytes. Hum. Reprod. 1998; 13 (Suppl. 3): 161–74.CrossRefGoogle ScholarPubMed
Mouzon, , Lancaster, P. International working group for registers on assisted reproduction. J. Assist. Reprod. Gen. 1997; 14: 251S–65.Google Scholar
Levran, D., Dor, J., Rudak, E., Nebel, L., Ben-Shlomo, I., Ben-Rafael, Z., Mashiach, S. Pregnancy potential of human oocytes––the effect of cryopreservation. N. Engl. J. Med. 1990; 323: 1153–6.Google Scholar
Selick, C.E., Hofmann, G.E., Albano, C., Horowitz, G.M., Copperman, A.B., Garrisi, G.J., Navot, D. Embryo quality and pregnancy potential of fresh compared with frozen embryos—is freezing detrimental to high quality embryos?Hum. Reprod. 1995; 10: 392–5.CrossRefGoogle ScholarPubMed
Check, J.H., Choe, J.K., Nazari, A., Fox, F., Swenson, K. Fresh embryo transfer is more effective than frozen for donor oocyte recipients but not for donors. Hum. Reprod. 2001; 16: 1403–8.CrossRefGoogle Scholar
Mandelbaum, J., Junca, A.M., Plachot, M., Alnot, M.O., Alvarez, S., Debache, C., Salat-Baroux, J., Cohen, J. Human embryo cryopreservation, extrinsic and intrinsic parameters of success. Hum. Reprod. 1987; 2: 709–15.CrossRefGoogle Scholar
Karlstrom, P.O., Bergh, T., Forsberg, A.S., Sandkvist, U., Wikland, M. Prognostic factors for the success rate of embryo freezing. Hum. Reprod. 1997; 12: 1263–6.CrossRefGoogle ScholarPubMed
Abbeel, E., Camus, M., Waesberghe, L., Devroey, P., Steirteghem, A.C. Viability of partially damaged human embryos after cryopreservation. Hum. Reprod. 1997; 12: 2006–10.CrossRefGoogle ScholarPubMed
Burns, W.N., Gaudet, T.W., Martin, M.B., Leal, Y.R., Schoen, H., Eddy, C.A., Schenken, R.S. Survival of cryopreservation and thawing with all blastomeres intact identifies multicell embryos with superior frozen embryo transfer outcome. Fertil. Steril. 1999; 72: 527–32.CrossRefGoogle ScholarPubMed
Wang, J.X., Yap, Y.Y., Matthews, C.D. Frozen–thawed embryo transfer: influence of clinical factors on implantation rate and risk of multiple conception. Hum. Reprod. 2001; 16: 2316–19.CrossRefGoogle ScholarPubMed
Check, J.H., O'Shaughnessy, A., Lurie, D., Fisher, C., Adelson, H.G. Evaluation of the mechanism for higher pregnancy rates in donor oocyte recipients by comparison of fresh with frozen embryo transfer pregnancy rates in a shared oocyte programme. Hum. Reprod. 1995; 10: 3022–7.CrossRefGoogle Scholar
Check, J.H., Choe, J.K., Katsoff, D., Summers-Chase, D., Wilson, C. Controlled ovarian hyperstimulation adversely affects implantation following in vitro fertilization-embryo transfer. J. Assist. Reprod. Genet. 1999; 16: 416–20.CrossRefGoogle ScholarPubMed
Hu, Y., Maxson, W.S., Hoffman, D.I., Ory, S.J., Eager, S. A comparison of post-thaw results between cryopreserved embryos derived from intracytoplasmic sperm injection and those from conventional IVF. Fertil. Steril. 1999; 72: 1045–8.CrossRefGoogle ScholarPubMed
Steirteghem, A.C., Elst, J., Abbeel, E., Joris, H., Camus, M., Devroey, P. Cryopreservation of supernumerary multicellular human embryos obtained after intracytoplasmic sperm injection. Fertil. Steril. 1994; 62: 775–80.Google ScholarPubMed
Kowalik, A., Palermo, G.D., Barmat, L., Veeck, L., Rimarachin, J., Rosenwaks, Z. Comparison of clinical outcome after cryopreservation of embryos obtained from intracytoplasmic sperm injection and in-vitro fertilization. Hum. Reprod. 1998; 13: 2848.CrossRefGoogle ScholarPubMed
Palermo, , Cohen, J., Alikani, M., Adler, A., Rosenwaks, Z. Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil. Steril. 1995; 63: 1231–40.CrossRefGoogle ScholarPubMed
Hoover, L., Baker, A., Check, J.H., Lurie, D., Summers, D. Clinical outcome of cryopreserved human pronuclear stage embryos resulting from intracytoplasmic sperm injection. Fertil. Steril. 1997; 67: 621–4.CrossRefGoogle ScholarPubMed
Macas, E., Imthurn, B., Borsos, M., Rosselli, M., Maurer-Major, E., Keller, P.J. Impairment of the developmental potential of frozen–thawed human zygotes obtained after intracytoplasmic sperm injection. Fertil. Steril. 1998; 69: 630–5.CrossRefGoogle ScholarPubMed
Damario, M.A., Hammitt, D.G., Galanits, T.M., Session, D.R., Dumesic, D.A. Pronuclear stage cryopreservation after intracytoplasmic sperm injection and conventional IVF: implications for timing of the freeze. Fertil. Steril. 1999; 72: 1049–54.CrossRefGoogle ScholarPubMed
Wennerholm, W.B. Cryopreservation of embryos and oocytes: obstetric outcome and health in children. Hum. Reprod. 2000; 15 (Suppl. 5): 18–25.CrossRefGoogle ScholarPubMed
Schalkoff, M.E., Oskowitz, S.P., Powers, R.D. A multifactorial analysis of the pregnancy outcome in a successful embryo cryopreservation program. Fertil. Steril. 1993; 59: 1070–4.CrossRefGoogle Scholar
Lin, Y., Cassidenti, D., Chacon, R., et al. Successful implantation of frozen sibling embryos is influenced by the outcome of the cycle from which they were derived. Fertil. Steril. 1995; 63: 262–7.CrossRefGoogle ScholarPubMed
Wang, W.H., Meng, L., Hackett, R.J., Odenbourg, R., Keefe, D.L. Limited recovery of meiotic spindle in living human oocytes after cooling–rewarming observed using polarized light microscopy. Hum. Reprod. 2001a; 16: 2374–8.CrossRefGoogle ScholarPubMed
Ben-Ozer, S., Vermesh, M. Full term delivery following cryopreservation of human embryos for 7. 5 years. Hum. Reprod. 1999; 14(6): 1650–2.CrossRefGoogle ScholarPubMed
Revel, A., Safran, A., Laufer, N., Lewin, A., Reubinov, B.E., Simon, A. Twin delivery following 12 years of human embryo cryopreservation: case report. Hum. Reprod. 2004; 19(2): 328–9.CrossRefGoogle ScholarPubMed
Lopez Teijon, M., Serra, O., Olivares, R., Moragas, M., Castello, C., Alvarez, J.G. Delivery of a healthy baby following the transfer of embryos cryopreserved for 13 years. Reprod. Biomed. Online 2006; 13(6): 821–2.CrossRefGoogle ScholarPubMed
Sutcliffe, A., D'Souza, S., Cadman, J., et al. Minor congenital anomalies, major congenital malformations and development in children conceived from cryopreserved embryos. Hum. Reprod. 1995a; 10: 3332–7.CrossRefGoogle ScholarPubMed
Shaw, J.M., Trounson, A. Effect of dimethylsulfoxide and protein concentration on the viability of two-cell mouse embryos frozen with a rapid freezing technique. Cryobiology 1989; 26: 413–21.CrossRefGoogle ScholarPubMed
Rall, W.F., Wood, M.J., Kirby, C., et al. Development of mouse embryos cryopreserved by vitrification. J. Reprod. Fertil. 1987; 80: 499–504.CrossRefGoogle ScholarPubMed
Liu, J., Abbeel, E., Steirteghem, A. Assessment of ultrarapid and slow freezing procedures for 1-cell and 4-cell mouse embryos. Hum. Reprod. 1993; 7: 1115–19.CrossRefGoogle Scholar
Olivennes, F., Rufat, P., Andre, B., Pourade, A., Quiros, M.C., Frydman, R. The increased risk of complication observed in singleton pregnancies resulting from in-vitro fertilization (IVF) does not seem to be related to the IVF method itself. Hum. Reprod. 1993; 8(8): 1297–300.CrossRefGoogle ScholarPubMed
Tanbo, Dale, , P.O., Lunde, O., Moe, N., übyholm, T. Obstetric outcome in singleton pregnancies after assisted reproduction. Obstet. Gynecol. 1995; 86: 188–92.CrossRefGoogle ScholarPubMed
Frydman, R., Forman, R.G., Belaisch-Allart, J., et al. An obstetric analysis of fifty consecutive pregnancies after transfer of cryopreserved human embryos. Am. J. Obstet. Gynecol. 1989; 160: 209–13.CrossRefGoogle ScholarPubMed
Rizk, B., Edwards, R.G., Nicolini, U., et al. Edward's syndrome after the replacement of cryopreserved-thawed embryos. Fertil. Steril. 1991; 55: 208–10.CrossRefGoogle Scholar
Deffontaines, D., Logerot-Lebrun, H., Sele, B., et al. Comparaison des grossesses issues de transferts d'embryons congeles aux grossesses issues de transferts d'embryons frais en fecondation in vitro. Contracept. Fertil. Sex. 1994; 22: 287–91.Google Scholar
Wada, I., Macnamee, M.C., Wick, K., Bradfield, J.M., Brinsden, P.R. Birth characteristics and perinatal outcome of babies conceived from cryopreserved embryos. Hum. Reprod. 1994; 9: 543–6.CrossRefGoogle ScholarPubMed
Heijnsbroek, I., Helmerhorst, F.M., Berg-Helder, A.F., Zwan, K.J., Naaktgeboren, N., Keirse, , M.J. Follow-up of 30 pregnancies after embryo cryopreservation. Eur. J. Obstet. Gynecol. Reprod. Biol. 1995; 59(2): 201–4.CrossRefGoogle Scholar
Sutcliffe, A.G., D'Souza, S.W., Cadman, J., et al. Outcome in children from cryopreserved embryos. Arch. Dis. Child. 1995b; 72: 290–3.CrossRefGoogle ScholarPubMed
Olivennes, F., Schneider, Z., Remy, V., et al. Perinatal outcome and follow-up of 82 children aged 1–9 years old conceived from cryopreserved embryos. Hum. Reprod. 1996; 11: 1565–8.CrossRefGoogle ScholarPubMed
Wennerholm, Hamberger, , L., Nilsson, L., Wennergren, M., Wikland, M.Bergh, C. Obstetric and perinatal outcome of children conceived from cryopreserved embryos. Hum. Reprod. 1997; 12: 1819–25.CrossRefGoogle ScholarPubMed
Wood, M.J. Embryo freezing: is it safe?Hum. Reprod. 1997; 12 (Natl Suppl. 1): 32–7.Google Scholar
Wennerholm, U.B., Albertsson-Wikland, K., Bergh, C., et al. Post-natal growth and health in children born after cryopreservation as embryos. Lancet 1998; 351: 1085–90.CrossRefGoogle Scholar
Bergh, T., Ericson, A., Hillensjo, T., Nygren, K.G., Wennerholm, U.B. Deliveries and children born after in-vitro fertilisation in Sweden 1982-95: a retrospective cohort study. Lancet 1999; 354(9190): 1579–85.CrossRefGoogle ScholarPubMed
Lane, M., Gardner, D.K. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 1994; 102: 305–12.CrossRefGoogle ScholarPubMed
Thompson, J.G., Gardner, D.K., Pugh, P.A., et al. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod. 1995; 53: 1385–91.CrossRefGoogle ScholarPubMed
Karran, G., Legge, M. Non-enzymatic formation of formaldehyde in mouse ooycte freezing mixtures. Hum. Reprod. 1996; 11: 2691–86.CrossRefGoogle Scholar
Mahadevan, M.M., McIntosh, A., Miller, M.M., et al. Formaldehyde in cryoprotectant propanediol and effect on mouse zygotes. Hum. Reprod. 1998; 13: 979–82.CrossRefGoogle ScholarPubMed
Bonduelle, M., Joris, H., Hofmans, K., et al. Mental development of 201 ICSI children at 2 years of age. Lancet 1998; 351: 1553.CrossRefGoogle ScholarPubMed
Bowen, J., Gibson, F.L., Leslie, G.I., Saunders, D.M. Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet 1998; 351: 1529–34.CrossRefGoogle ScholarPubMed
Sheppard, D.M., Fisher, R.A., Lawler, S.D., Povey, S. Tetraploid conceptus with three paternal contributions. Hum. Genet. 1982; 62: 371–4.CrossRefGoogle ScholarPubMed
Warburton, D., Byrne, J., Canki, N. (eds) Chromosome Anomalies and Prenatal Development: An Atlas. Oxford Monographs on Medical Genetics. No. 21, Oxford University Press; 1991.Google Scholar
Hui, S.W., Stewart, T.P., Boni, L.T., Yeagle, P.L. Membrane fusion through point defects in bilayers. Science 1981; 212: 921–3.CrossRefGoogle ScholarPubMed
Zimmermann, U., Vienken, J. Electric field-induced cell-to-cell fusion. J. Memb. Biol. 1982; 67: 165–82.CrossRefGoogle ScholarPubMed
Ng, S.C., Sathananthan, A.H., Wong, P.C., et al. Fine structure of early human embryos frozen with 1,2 propanediol. Gamete Res. 1988; 19: 253–63.CrossRefGoogle ScholarPubMed
Dumoulin, J.C., Bergers-Janssen, J.M., Pieters, M.H., Enginsu, M.E., Geraedts, J.P., Evers, J.L. The protective effects of polymers in the cryopreservation of human and mouse zonae pellucidae and embryos. Fertil. Steril. 1994; 62: 793–8.CrossRefGoogle ScholarPubMed
Trounson, A. In vitro fertilization and embryo preservation. In: Trounson, A., Wood, C. (eds). In Vitro Fertilization and Embryo Transfer. Churchill Livingstone, Edinburgh; 1984; pp. 111–30.Google Scholar
Balakier, H., Zenzes, M., Wang, P., et al. The effect of cryopreservation on development of S- and G2-phase mouse embryos. J. In Vitro Fertil. Embryo Transfer 1991; 8: 89–95.CrossRefGoogle ScholarPubMed
Bongso, A., Chye, N.S., Sathananthan, H., et al. Chromosome analysis of two-cell mouse embryos frozen by slow and ultrarapid methods using two different cryoprotectants. Fertil. Steril. 1988; 49: 908–12.CrossRefGoogle ScholarPubMed
Ishida, G.M., Saito, H., Ohta, N., et al. The optimal equilibration time for mouse embryos frozen by vitrification with trehalose. Hum. Reprod. 1997; 12: 1259–62.CrossRefGoogle ScholarPubMed
Shaw, J.M., Kola, I., MacFarlane, D.R., Trounson, A.O. An association between chromosomal abnormalities in rapidly frozen 2-cell mouse embryos and the ice-forming properties of the cryoprotective solution. J. Reprod. Fertil. 1991; 91: 9–18.CrossRefGoogle ScholarPubMed
Dale, B., Gualtieri, R., Talevi, R., et al. Intercellular communication in the early human embryo. Mol. Reprod. Dev. 1991; 29: 22–8.CrossRefGoogle ScholarPubMed
Mottla, G.L., Adelman, M.R., Hall, J.L., et al. Lineage tracing demonstrates that blastomeres of early cleavage-stage human pre-embryos contribute to both trophectoderm and inner cell mass. Hum. Reprod. 1995; 10: 384–91.CrossRefGoogle ScholarPubMed
Laverge, H., Elst, J., Sutter, P., et al. Fluorescent in situ hybridization on human embryos showing cleavage arrest after freezing and thawing. Hum. Reprod. 1998; 13: 425–9.CrossRefGoogle ScholarPubMed
Balakier, H., Cabaca, O., Bouman, D., Shewchuk, A.B., Laskin, C., Squire, J.A. Spontaneous blastomere fusion after freezing and thawing of early human embryos leads to polyploidy and chromosomal mosaicism. Hum. Reprod. 2000; 15(11): 2404–10.CrossRefGoogle ScholarPubMed
James, R.M., West, J.D. A chimaeric animal model for confined placental mosaicism. Hum. Genet. 1994; 93: 603–4.CrossRefGoogle ScholarPubMed
Ginsburg, K.A., Johnson, M.P., Sacco, A.G., et al. Tetraploidy after frozen embryo transfer: cryopreservation may interfere with first mitotic division. 39th Annual Meeting of the Pacific Coast Fertility Society. 1991P-196, Abstracts of oral and poster presentations. Program Supplement, S169.Google Scholar
Henery, C., Bard, J.B.L., Kaufman, M.H. Tetraploidy in mice, embryonic cell number, and the grain of the developmental map. Dev. Biol. 1992; 152: 233–41.CrossRefGoogle ScholarPubMed
Tanbo, T., Abyholm, T. Obstetric and perinatal outcome in pregnancies after assisted reproduction. Curr. Opin. Obstet. Gynecol. 1996; 8(3): 193–8.CrossRefGoogle ScholarPubMed
Wright, G., Wiker, S., Elsner, C., Kort, H., Massey, J., Mitchell, D., Toledo, A., Cohen, J. Observations on the morphology of pronuclei and nucleoli in human zygotes and implications for cryopreservation. Hum. Reprod. 1990; 5(1): 109–15.CrossRefGoogle ScholarPubMed
Auwera, I., Meuleman, C., Koninckx, P.R. Human menopausal gonadotrophin increases pregnancy rate in comparison with clomiphene citrate during replacement cycles of frozen/thawed pronucleate ova. Hum. Reprod. 1994; 9(8): 1556–60.CrossRefGoogle ScholarPubMed
Al-Hasani, S., Ludwig, M., Gagsteiger, F., Kupker, W., Sturm, R., Yilmaz, A., Bauer, O., Diedrich, K. Comparison of cryopreservation of supernumerary pronuclear human oocytes obtained after intracytoplasmic sperm injection (ICSI) and after conventional in-vitro fertilization. Hum. Reprod. 1996; 11: 604–7.CrossRefGoogle ScholarPubMed
Go, K., Corson, S., Batzer, F., et al. Live birth from a zygote cryopreserved for 8 years. Hum. Reprod. 1998; 13: 2970–1.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Damiano, G., Fratto, R., Giunchi, S., Venturoli, S. Oocyte cryopreservation in oncological patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004;113 (Suppl. 1): S14–16.CrossRefGoogle ScholarPubMed
Whittingham, D.G. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at—196 degrees C. J. Reprod. Fertil. 1977; 49(1): 89–94.CrossRefGoogle Scholar
Vincent, C., Johnson, M.H.. Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxf. Rev. Reprod. Biol. 1992; 14: 73–100.Google ScholarPubMed
Kazem, R., Thompson, L.A., Srikantharajah, A., Laing, M.A., Hamilton, M.P.R., Templeton, A. A Cryopreservation of human oocytes and fertilization by two techniques in-vitro fertilization and intracytoplasmic sperm injection. Hum. Reprod. 1995; 10: 2650–4.CrossRefGoogle ScholarPubMed
Blerkom, , Davis, P. Cytogenetic, cellular and developmental consequences of cryopreservation of immature and mature mouse and human oocytes. Microsc. Res. Tech. 1994; 27: 165–93.CrossRefGoogle ScholarPubMed
Pickering, S.J., Brande, P.R., Johnson, M.H. Transient cooling to room temperature can cause irreversible disruption to the meiotic spindle in human oocytes. Fertil. Steril. 1990; 54: 102–8.CrossRefGoogle Scholar
Wang, W.H., Cao, B., Meng, L., Hackett, R.J., Keefe, D.L. Imaging living, human MII oocytes with the polscope reveals a high proportion of abnormal meiotic spindles. Fertil. Steril. 2001b; 76 (Suppl. 1): S2.CrossRefGoogle Scholar
Mazur, P., Rall, W.F., Leibo, S.P. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova: influence of the method of calculating the temperature dependence of water permeability. Cell Biophys. 1984; 6: 197–213.CrossRefGoogle ScholarPubMed
Bernard, A., McGrath, J.J., Fuller, B.J., Imoedemhe, D., Shaw, R.W. Osmotic response of oocytes using a microscope diffusion chamber: a preliminary study comparing murine and human ova. Cryobiology 1988; 25: 495–501.CrossRefGoogle ScholarPubMed
Magistrini, M., Szollosi, D. Effects of cold and of isopropyl-N-phenylcarbamate on the second meiotic spindle of mouse oocytes. Eur. J. Cell Biol. 1980; 22(2): 699–707.Google Scholar
Mandelbaum, J., Anastasiou, O., Levy, R., Guerin, J.F., Larouziere, V., Antoine, J.M. Effects of cryopreservation on the meiotic spindle of human oocytes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004; 113 (Suppl. 1): S17–23.CrossRefGoogle ScholarPubMed
Kola, I., Cirby, C., Shaw, J., Davey, A., Trouson, A. Vitrification of mouse oocytes results in aneuploid zygotes and malformed fetuses. Teratology 1988; 38: 467–74.CrossRefGoogle ScholarPubMed
Battaglia, D.E., Goodwin, P., Klein, N.A., Soules, M.R. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum. Reprod. 1996; 11: 2217–22.CrossRefGoogle ScholarPubMed
Sandalinas, Marquez, , C., Munne, S. Spectral karyotyping of fresh, non-inseminated oocytes. Mol. Hum. Reprod. 2002; 8: 580–5.CrossRefGoogle ScholarPubMed
Johnson, MH, Pickering, SJ. The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte. Development 1987; 100(2): 313–24.Google ScholarPubMed
Elst, J, Abbeel, E, Jacobs, R, Wisse, E, Steirteghem, A. Effect of 1,2-propanediol and dimethylsulphoxide on the meiotic spindle of the mouse oocyte. Hum. Reprod. 1988; 3(8): 960–7.CrossRefGoogle ScholarPubMed
Sathananthan, , Trounson, A., Freeman, L., Brady, T. The effects of cooling human oocytes. Hum. Reprod. 1988; 3: 968–77.CrossRefGoogle ScholarPubMed
Gook, , Osborn, S.M., Johnston, W.I. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum. Reprod. 1993; 8: 1101–9.CrossRefGoogle ScholarPubMed
Zenzes, , Bielecki, R., Casper, R.F., Leibo, S.P. Effects of chilling to 0 °C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil. Steril. 2001; 75: 769–77.CrossRefGoogle Scholar
Fahy, , McFarlane, D.R., Angell, C.A., Meryman, H.A.T. Vitrification as an approach to cryopreservation. Cryobiology 1984; 21: 407–26.CrossRefGoogle ScholarPubMed
Toth, , Lanzendorf, S.E., Sandow, B.A., Veeck, L.L., Hassen, W.A., Hansen, K., et al. Cryopreservation of human prophase I oocytes collected from unstimulated follicles. Fertil. Steril. 1994; 61: 1077–82.CrossRefGoogle ScholarPubMed
Son, , Park, S.E., Lee, K.A., Lee, W.S., Ko, J.J., Yoon, T.K., et al. Effects of 1,2-propanediol and freezing-thawing on the in vitro developmental capacity of human immature oocytes. Fertil. Steril. 1996; 66: 995–9.CrossRefGoogle ScholarPubMed
Park, , Son, W.Y., Lee, S.H., Lee, K.A., Ko, J.J., Cha, K.Y. Chromosome and spindle configurations of human oocytes matured in vitro after cryopreservation at the germinal vesicle stage. Fertil. Steril. 1997; 68: 920–6.CrossRefGoogle ScholarPubMed
Boiso, I., Marti, M., Santalo, J., Ponsa, M., Barri, P.N., Veiga, A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum. Reprod. 2002; 17(7): 1885–91.CrossRefGoogle ScholarPubMed
Baka, Toth, T.L., Veeck, L.L., Jones, H.W. Jr., Muasher, S.J.Lanzendorf, S.E. Evaluation of the spindle apparatus of in-vitro matured human oocytes following cryopreservation. Hum. Reprod. 1995; 10: 1816–20.CrossRefGoogle ScholarPubMed
Cobo, A., Rubio, C., Gerli, S., Ruiz, A., Pellicer, A., Remohi, J. Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil. Steril. 2001; 75: 354–60.CrossRefGoogle Scholar
Tucker, , Wright, G., Morton, P.C., Massey, J.B. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation. Fertil. Steril. 1998; 70: 578–9.CrossRefGoogle ScholarPubMed
Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1986; i: 884–6.CrossRefGoogle Scholar
Chen, C. Pregnancies after human oocyte cryopreservation. Ann. N.Y. Acad. Sci. 1988; 54: 541–9.CrossRefGoogle Scholar
Uem, J.F., Siebzehnrubl, E.R., Schuh, B., Koch, R., Trotnow, S., Lang, N. Birth after cryopreservation of unfertilized oocytes. Lancet 1987; i: 752–3.Google Scholar
Porcu, E., Fabbri, R., Seracchioli, R., Ciotti, P.M., Magrini, O., Flamigni, C. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil. Steril. 1997; 68: 724–6.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Petracchi, S., Ciotti, P.M., Flamigni, C. Ongoing pregnancy after intracytoplasmic sperm injection of testicular spermatozoa into cryopreserved human oocytes. Am. J. Obstet. Gynecol. 1999a; 180: 1044–5.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Ciotti, P.M., Petracchi, S., Seracchioli, R., Flamigni, C. Ongoing pregnancy after intracytoplasmic sperm injection of epididymal spermatozoa into cryopreserved human oocytes. J. Assist. Reprod. Genet. 1999b; 16: 283–5.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Damiano, G., Giunchi, S., Fratto, R., Ciotti, P.M., Venturoli, S., Flamigni, C. Clinical experience and applications of oocyte cryopreservation. Mol. Cell. Endocrinol. 2000; 169: 33–7.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Seracchioli, R., Cesare, R., Giunchi, S., Caracciolo, D. Obsterics, perinatal outcome and follow up of children conceived from cryopreserved oocytes. Fertil. Steril. 2000a; 74 (n.3S, Suppl. 1): S48.CrossRefGoogle Scholar
Porcu, E. Oocyte freezing. Semin. Reprod. Med. 2001a; 19: 221–30.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Ciotti, P.M., Frau, F., Cesare, R., Venturoli, S. Oocytes or embryo storage?Fertil. Steril. 2002; 169 (Suppl. 1): S15.CrossRefGoogle Scholar
Polak de Fried, E., Notrica, J., Rubinstein, M., Marazzi, A., Gomez Gonzalez, M. Pregnancy after human donor oocyte cryopreservation and thawing in association with intracytoplasmic sperm injection in a patient with ovarian failure. Fertil. Steril. 1998; 69(3): 555–7.CrossRefGoogle Scholar
Young, E., Kenny, A., Puigdomenech, E., Thillo, G., Tiveron, M., Piazza, A. Triplet pregnancy after intracytoplasmic sperm injection of cryopreserved oocytes: case report. Fertil. Steril. 1998; 70(2): 360–1.CrossRefGoogle ScholarPubMed
Nawroth, F., Kissing, K. Pregnancy after intracytoplasmatic sperm injection (ICSI) of cryopreserved human oocytes. Acta Obstet. Gynecol. Scand. 1998; 77(4): 462–3.Google ScholarPubMed
Chen, S.U., Lien, I.R., Tsai, Y.Y., Hanh, L.I. Successful pregnancy occurred from slowly freezing human oocytes using the regime of 1.5 mol/l 1,2-propanediol with 0.3 mol/l sucrose. Hum. Reprod. 2002; 17(5): 1412.CrossRefGoogle ScholarPubMed
Fosas, N., Marina, F., Torres, P.J., Jove, I., Martin, P., Perez, N., Arnedo, N., Marina, S. The births of five Spanish babies from cryopreserved donated oocytes. Hum. Reprod. 2003; 18(7): 1417–21.CrossRefGoogle ScholarPubMed
Kuleshova, L., Gianaroli, L., Magli, C., Ferraretti, A., Trounson, A. Birth following vitrification of a small number of human oocytes: case report. Hum. Reprod. 1999; 14(12): 3077–9.CrossRefGoogle ScholarPubMed
Yoon, T.K., Kim, T.J., Park, S.E., Hong, S.W., Ko, J.J., Chung, H.M., Cha, K.Y. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil. Steril. 2003; 79(6): 1323–6.CrossRefGoogle Scholar
Katayama, K.P., Stehlik, J., Kuwayama, M., Kato, O., Stehlik, E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil. Steril. 2003; 80(1): 223–4.CrossRefGoogle ScholarPubMed
Quintans, C.J., Donaldson, M.J., Bertolino, M.V., Pasqualini, R.S. Birth of two babies using oocytes that were cryopreserved in a choline-based freezing medium. Hum. Reprod. 2002; 17(12): 3149–52.CrossRefGoogle Scholar
Boldt, J., Cline, D., McLaughlin, D. Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles. Hum. Reprod. 2003; 18(6): 1250–5.CrossRefGoogle ScholarPubMed
Azambuja, R., Badalotti, M., Teloken, C., Michelon, J., Petracco, A. Case report: successful birth after injection of frozen human oocytes with frozen epididymal spermatozoa. Reprod. BioMed. Online 2005; 11: 449–51.CrossRefGoogle ScholarPubMed
Ching-Ching Tjer, G., Tak-Yu Chiu, T., Cheung, L., Lok, I.H., Haines, C.J. Birth of a healthy baby after transfer of blastocysts derived from cryopreserved human oocytes fertilized with frozen spermatozoa. Fertil. Steril. 2005; 83: 1547.e1–e3.Google Scholar
Levi Setti, P.E., Albani, E., Novara, P.V., Cesana, A., Bianchi, S., Negri, L. Normal birth after transfer of cryopreserved human embryos generated by microinjection of cryopreserved testicular spermatozoa into cryopreserved human oocytes. Fertil. Steril. 2006; 83: 1041.e9–10.Google Scholar
Chen, S.U., Lien, Y.R., Chen, H.F., Chang, L.J., Tsai, Y.Y., Yang, Y.S. Observational clinical follow-up of oocyte cryopreservation using a slow-freezing method with 1,2-propanediol plus sucrose followed by ICSI. Hum. Reprod. 2005; 20(7): 1975–80.CrossRefGoogle ScholarPubMed
Porcu, E. Cryopreservation of oocytes: indications, risks and outcome. Hum. Reprod. 2005; 20: 50.Google Scholar
Borini, A., Sciajno, R., Bianchi, V., Sereni, E., Flamigni, C., Coticchio, G. Clinical outcome of oocyte cryopreservation after slow cooling with a protocol utilizing a high sucrose concentration. Hum. Reprod. 2006; 21(2): 512–17.CrossRefGoogle ScholarPubMed
Levi Setti, P.E., Albani, E., Novara, P.V., Cesana, A., Morreale, G. Cryopreservation of supernumerary oocytes in IVF/ICSI cycles. Hum. Reprod. 2006; 21(2): 370–5.CrossRefGoogle ScholarPubMed
Sala, G.B., Nicoli, A., Villani, M.T., Pescarini, M., Gallinelli, A., Blickstein, I. Outcome of 518 salvage oocyte-cryopreservation cycles performed as a routine procedure in an in vitro fertilization program. Fertil. Steril. 2006; 86(5): 1423–7.Google Scholar
Kuwayama, M., Vajta, G., Kato, O., Leibo, S. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. BioMed. Online 2005; 11(3): 300–8.CrossRefGoogle ScholarPubMed
Lucena, E., Bernal, D.P., Lucena, C., Rojas, A., Moran, A., Lucena, A. Successful ongoing pregnancies after vitrification of oocytes. Fertil. Steril. 2006; 85(1): 108–11.CrossRefGoogle ScholarPubMed
Porcu, E., Fabbri, R., Damiano, G., Fratto, R., Giunchi, S., Venturoli, S. Oocyte cryopreservation in oncological patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004; 113 (Suppl. 1): S14–16.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×