This work develops techniques and basic results concerning the homotopy theory of enriched diagrams and enriched Mackey functors. Presentation of a category of interest as a diagram category has become a standard and powerful technique in a range of applications. Diagrams that carry enriched structures provide deeper and more robust applications. With an eye to such applications, this work provides further development of both the categorical algebra of enriched diagrams, and the homotopy theoretic applications in K-theory spectra. The title refers to certain enriched presheaves, known as Mackey functors, whose homotopy theory classifies that of equivariant spectra. More generally, certain stable model categories are classified as modules - in the form of enriched presheaves - over categories of generating objects. This text contains complete definitions, detailed proofs, and all the background material needed to understand the topic. It will be indispensable for graduate students and researchers alike.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.