Skip to main content Accessibility help
×
    Show more authors
  • You may already have access via personal or institutional login
  • Select format
  • Publisher:
    Cambridge University Press
    Publication date:
    30 June 2022
    14 July 2022
    ISBN:
    9781108976015
    9781108838672
    Dimensions:
    (229 x 152 mm)
    Weight & Pages:
    0.92kg, 518 Pages
    Dimensions:
    Weight & Pages:
You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis.

    Reviews

    ‘A beautiful exposition of the holomorphic side of martingale theory, where Hardy martingales play the leading role, with many deep applications to Banach spaces. Unlike most books on martingale theory where convexity is central, Müller’s remarkable and unique book places the emphasis on the martingales that arise from averaging the boundary values of analytic functions in Hardy spaces. The latter discretize the continuous martingales obtained by composing an analytic function with complex Brownian motion. Consideration of the Banach space valued case leads to deep geometric applications.’

    Gilles Pisier - Texas A&M

    ‘The book is a must for anyone interested in the delicate geometry of the Lebesgue space L1(𝕋), of its subspace H1(𝕋) and of related Banach spaces. It exposes deep results of Bourgain, Pisier, Talagrand and other top analysts.’

    Gideon Schechtman - Weizmann Institute of Sciences

    ‘This book presents a wonderful bridge between Probability Theory, Functional Analysis and Complex Analysis, that emerged in last decades due to the work of many great mathematicians. It is a pleasure to read. The results are placed in their logical context and connections between them are clearly explained. Many remarks put the development of the subject into historical perspective. The presentation is clear and reasonably detailed.’

    Przemysław Wojtaszczyk - IMPAN Warsaw

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.