Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T06:04:17.684Z Has data issue: false hasContentIssue false

8 - Basic gamma-ray burst afterglows

Published online by Cambridge University Press:  05 December 2012

Peter Mészáros
Affiliation:
Department of Physics and Center for Particle Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802, USA
Ralph A. M. J. Wijers
Affiliation:
Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Introduction

As we have seen in the previous chapters, observational evidence combined with elementary theoretical considerations leads to the view that gamma-ray bursts (GRBs) and their afterglows result from dissipation of energy from an ultrarelativistic flow, which in turn is generated by a catastrophic event that injects a supernova-like amount of energy into a small volume. As discussed in Chapter 7, this dissipation can be both internal (when radial or angular differences in motion lead to heat production and subsequent radiation) and external (when the outflow interacts with its environment). The prevailing view attributes the prompt gamma-ray emission to the internal dissipation, and the afterglow to external dissipation, but the phenomena may overlap in time. A case in point is the so-called reverse-shock emission seen in optical wavelengths, during and soon after the prompt emission, and in radio wavelengths within the first days (Chapters 6 and 7), which is best explained as due to the reverse shock propagating back into the ejecta when they decelerate onto the external mass. The present chapter will deal with the physics of the external interaction of the outflow, regardless of how soon after the burst onset we see its emission.

There are some basic assumptions we make about the physics that dominates the behavior of our system. First, we will here treat only the spherically symmetric case. This is generally not correct, because GRBs are known to be highly collimated.

Type
Chapter
Information
Gamma-ray Bursts , pp. 151 - 168
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, A. A. et al. (2009a). Science 36, 8075.
Abdo, A. A. et al. (2009b). Nature 462, 331.
Abdo, A. A. et al. (2009c). ApJ 706, L138.
Asano, K., Guiriec, S., & Mészáros, P. (2009). ApJ 705, L191.
Bahcall, J. N. & Mészáros, P. (2000). Phys. Rev. Lett. 85, 1362.
Band, D. et al. (1993). ApJ 413, 281.
Baring, M. & Harding, A. (1997). ApJ 491, 663.
Baring, M. (2006). ApJ 650, 1004.
Beloborodov, A. M. & Uhm, Z. L. (1996). ApJ 651, L1.
Blandford, R. D. & McKee, C. F. (1976). Phys. Fluids 19, 1130.
Böttcher, M. & Dermer, C. (1998). ApJ 499, L131.
Burrows, D. et al. (2005). Science 309, 1833.
Chandra, P. et al. (2008). ApJ 683, 924.
Costa, E. et al. (1997). Nature, 387, 783.
Curran, P. A. et al. (2007). MNRAS 381, L65.
Curran, P. A., van der Horst, A. J., & Wijers, R. A. M. J. (2008). MNRAS 386, 859.
Dado, S., Dar, A., & De Rújula, A. (2009). ApJ 696, 994.
Dai, Z. G. (2004). ApJ 606, 1000.
De Pasquale, M. et al. (2010). ApJ 709, L146.
Derishev, E.V., Kocharovsky, V.V., & Kocharovsky, Vl.V. (1999). ApJ 521, 640
Derishev, E.V., Kocharovsky, V.V., & Kocharovsky, Vl.V. (2001). A&A 372, 1071
Dermer, C., Chiang, J., & Mitman, K. (2000). ApJ 537, 785.
Fan, Y. Z. & Piran, T. (2006). MNRAS 369, 197.
Fragile, P. et al. (2004). Astropart. Phys. 20, 598.
Frail, D. A. et al. (1997). Nature 389, 261.
Frail, D. A. et al. (2003). ApJ 590, 992.
Gehrels, N., Ramirez-Ruiz, E., & Fox, D.B. (2009). ARA&A 47, 567
Ghisellini, G. et al. (2007). ApJ 658, L75.
Ghisellini, G., Ghirlanda, G., Nava, L., & Celotti, A. (2010). MNRAS 403, 926
Granot, J., Piran, T., & Sari, R. (1999). ApJ 513, 679.
Granot, J., Piran, T., & Sari, R. (2000). ApJ 534, L163.
Granot, J. & Sari, R. (2002). ApJ 568, 820.
Granot, J. & Kumar, P. (2006). MNRAS 366, L13.
Granot, J., Königl, A., & Piran, T. (2006). MNRAS 370, 1946.
Granot, J., Cohen-Tanugi, J., & do Couto e Silva, E. (2008). ApJ 677, 92.
Granot, J., for the Fermi LAT and GBM collaborations (2010). In Proc. of The Shocking Universe, Venice, Italy September 2009 (arXiv:1003.2452).
Greiner, J. et al. (2009). A&A 498, 89.
Hurley, K. et al. (1994). Nature 372, 652.
Ioka, K. et al. (2006). A&A 458, 7.
Katz, J. (1994a). ApJ 432, L27.
Katz, J. (1994b). ApJ 432, L107.
Koureliotou, C. et al. (1993). ApJ 413, L101.
Kumar, P. & Panaitescu, A. (2000). ApJ 541, L51.
Kumar, P. & Barniol Duran, R. (2009). MNRAS 400, L75.
Lazzati, D. & Begelman, M. (2005). ApJ 629, 903.
Liang, E. W. et al. (2006). ApJ 646, 351.
Liang, E. W. et al. (2008). ApJ 675, 528.
Lithwick, Y. & Sari, R. (2001). ApJ 555, 540.
Mészáros, P., Laguna, P., & Rees, M. J. (1993). ApJ 414, 181.
Mészáros, P. & Rees, M. J. (1993a). ApJ 405, 278.
Mészáros, P. & Rees, M. J. (1993b). ApJ 418, L59.
Mészáros, P. & Rees, M. J. (1994). MNRAS 269, L41.
Mészáros, P., Rees, M. J., & Papathanassiou, H. (1994). ApJ 432, 181.
Mészáros, P. & Rees, M. J. (1997). ApJ 476, 232.
Mészáros, P., Rees, M. J., & Wijers R. A. M. J. (1998). ApJ 499, 301.
Mészáros, P. & Rees, M. J. (1999). MNRAS 306, L39.
Nakar, E. & Piran, T. (2003). ApJ 598, 400.
Nousek, J. et al. (2006). ApJ 642, 389.
O'Brien, P. et al. (2006). ApJ 647, 1213.
Paczyński, B. & Rhoads, J. (1993). ApJ 418, L5.
Panaitescu, A. & Kumar, P. (2001). ApJ 560, L49.
Panaitescu, A. et al. (2006a). MNRAS 366, 1357.
Panaitescu, A. et al. (2006b). MNRAS 369, 2059.
Panaitescu, A. (2007b). MNRAS 380, 374.
Panaitescu, A. (2007a). MNRAS 379, 331.
Papathanassiou, H. & Mészáros, P. (1996). ApJ 471, L91.
Pe'er, A. & Waxman, E. (2004). ApJ 613, 448.
Proga, D. & Zhang, B. (2006). MNRAS 370, 61.
Racusin, J. L. (2009). ApJ 698, 43.
Razzaque, S., Dermer, C. D., & Finke, J. D. (2009). arXiv:0908.0513.
Rees, M. J. & Mészáros, P. (1992). MNRAS 258, L41.
Rees, M. J. & Mészáros, P. (1998). ApJ 496, L1.
Rossi, E., Beloborodov, A., & Rees, M. J. (2005). MNRAS 369, 1797.
Sari, R. & Piran, T. (1995). ApJ 455, L143.
Sari, R. (1997). ApJ 489, L37.
Sari, R., Piran, T., & Narayan, R. (1998). ApJ 497, L17.
Sari, R. & Piran, T. (1999). ApJ 517, L109.
Sari, R., Piran, T., & Halpern, J. (1999). ApJ 519, L17.
Sari, R. & Mészáros, P. (2000). ApJ 535, L33.
Sironi, L. & Spitkovsky, A. (2011). ApJ 726, 75.
Spitkovsky, A. (2008). ApJ 673, L39.
Starling, R. L. c. et al. (2007). ApJ 661, 787.
Starling, R. L. C. et al. (2008). ApJ 672, 433.
Toma, K., Wu, X.-F., & Mészáros, P. (2009). ApJ 707, 1404.
Totani, T. (1999). ApJ 511, 41.
Uhm, Z. L. & Beloborodov, A. M. (1997). ApJ 665, L93.
van Eerten, H. J. & Wijers, R. A. M. J. (2009). MNRAS 394, 2164.
van Eerten, H. J., Leventis, K., Meliani, Z., Wijers, R. A. M. J., & Keppens, R. (2010). MNRAS 403, 300.
van Eerten, H. J., Meliani, Z., Wijers, R. A. M. J., & Keppens, R. (2011). MNRAS 410, 2016.
van Paradijs, J. et al. (1997). Nature 386, 686.
van Paradijs, J., Kouveliotou, C., & Wijers, R. A. M. J. (2000). ARA&A, 38, 379.
Vietri, M. (1997). ApJ 478, L9.
Wang, X. Y., Dai, Z. G., & Lu, T. (2001a). ApJ 556, 1010.
Wang, X. Y., Dai, Z. G., & Lu, T. (2001b). ApJ 546, L33.
Waxman, E. (1997a). ApJ 485, L5.
Waxman, E. (1997b). ApJ 489, L33.
Waxman, E. (1997c). ApJ 491, L19.
Weibel, E. S. (1959). Phys. Rev. Lett. 2, 83.
Wijers, R. A. M. J., Rees, M. J., & Mészáros, P. (1997). MNRAS 288, L51.
Wijers, R. A. M. J. & Galama, T. (1999). ApJ 523, 177.
Woosley, S. & Heger, A. (2006). In 16th Maryland Astrophysics Conference, AIP Conf. Proc. 836, eds: S. S., Holt, N., Gehrels, & J. A., Nousek, 398.
Yost, S. A., Harrison, F. A., Sari, R., & Frail, D. A. (2003). ApJ 597, 459.
Zhang, B. & Mészáros, P. (2001a). ApJ 552, L35.
Zhang, B. & Mészáros, P. (2001b). ApJ 559, 110.
Zhang, B. & Mészáros, P. (2004). Internat. J. Mod. Phys. A 19, 2385.
Zhang, B. et al. (2006). ApJ 642, 354.
Zhang, B. et al. (2007). ApJ 655, L25.
Zhang, B. et al. (2009). ApJ 703, 1696.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Basic gamma-ray burst afterglows
    • By Peter Mészáros, Department of Physics and Center for Particle Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802, USA, Ralph A. M. J. Wijers, Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Basic gamma-ray burst afterglows
    • By Peter Mészáros, Department of Physics and Center for Particle Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802, USA, Ralph A. M. J. Wijers, Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Basic gamma-ray burst afterglows
    • By Peter Mészáros, Department of Physics and Center for Particle Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802, USA, Ralph A. M. J. Wijers, Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.009
Available formats
×