This 2001 book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. This leads to an investigation of the logic of quantification over the universe of sets and a discussion of its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. The subject matter of the book falls on the borderline between philosophy and mathematics, and should appeal to both philosophers and mathematicians with an interest in the foundations of mathematics.
Review of the hardback:' … this book is thought-provoking … distinctive approach to the twin issues of mathematical ontology and mathematical foundations'.
Source: Australasian Journal of Philosophy
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.