Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T08:53:59.386Z Has data issue: false hasContentIssue false

Chapter 10 - Attention as Rational Choice

from Part III - Which Machinery Supports the Drive for Knowledge?

Published online by Cambridge University Press:  19 May 2022

Irene Cogliati Dezza
Affiliation:
University College London
Eric Schulz
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Charley M. Wu
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

I argue for a new operationalization of attention as a process of information selection that is endogenous, rather than exogenous, to decision-makers’ goals and constraints. Traditional accounts postulate that attention is captured in a “bottom-up” fashion by external sensory stimuli or in a “top-down” fashion by external experimental instructions. In contrast, recent studies of information-demand provide a powerful alternative view whereby attention is allocated endogenously to serve a decision-maker’s goals, and is subject to the decision-maker’s knowledge, biases, and constraints. I review neurophysiological evidence supporting this view, with a focus on optimal and potentially suboptimal forms of attention allocation aimed to reduce uncertainty and enhance reward gains.

Type
Chapter
Information
The Drive for Knowledge
The Science of Human Information Seeking
, pp. 217 - 236
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Science, 16(8), 437443.Google Scholar
Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 121.Google Scholar
Callaway, F., Rangel, A., & Griffiths, T. L. (2021). Fixation patterns in simple choice reflect optimal information sampling. PLoS Comp Biol. https://doi.org/10.1371/journal.pcbi.1008863.Google Scholar
Carrasco, M., Eckstein, M., Verghese, P., Boynton, G., & Treue, S. (2009). Visual attention: Neurophysiology, psychophysics and cognitive neuroscience. Vision Research, 49(10), 10331036. https://doi.org/10.1016/j.visres.2009.04.022.Google Scholar
Charpentier, C. J., Bromberg-Martin, E. S., & Sharot, , T., S. (2018). Valuation of knowledge and ignorance in mesolimbic reward circuitry. Proceedings of the National Academy of Sciences of the United States of America., 115(31), E7255-E7264.Google Scholar
Coenen, A., Nelson, J. D., & Gureckis, T. M. (2018). Asking the right questions about the psychology of human inquiry: Nine open challenges. Psychonomic Bulletin & Review, Jun. 4. https://doi.org/10.3758/s13423-018–1470–5. [Epub ahead of print]Google Scholar
Daddaoua, N., Lopes, M., & Gottlieb, J. (2016). Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Sci Rep, 6(20202). https://doi.org/10.1038/srep20202.Google Scholar
Foley, N. C., Kelley, S. P., Mhatre, H., Lopes, M., & Gottlieb, J. (2017). Parietal neurons encode expected gains in instrumental information. Proceedings of the National Academy of Science, 114(16), E3315E3323.Google Scholar
Gottlieb, J., Kusunoki, M., & Goldberg, M. E. (1998). The representation of visual salience in monkey parietal cortex. Nature, 391, 481484.Google Scholar
Gottlieb, J., & Oudeyer, P. Y. (2018). Toward a neuroscience of active sampling and curiosity. Nature Reviews Neuroscience, 19(12), 758770.Google Scholar
Horan, M., Daddaoua, N., & Gottlieb, J. (2019). Parietal neurons encode information sampling based on decision uncertainty. Nature Neuroscience, 22(8), 13271335. https://doi.org/10.1038/s41593-019-0440-1.Google Scholar
Hunt, L. T., Rutledge, R. B., Malalasekera, W. M., Kennerley, S. W., & Dolan, R. J. (2016). Approach-induced biases in human information sampling. PLoS Biol., 14(11), e2000638. https://doi.org/10.1371/journal.pbio.2000638.CrossRefGoogle ScholarPubMed
Iigaya, K., Story, G. W., Kurth-Nelson, Z., Dolan, R. J., & Dayan, P. (2016). The modulation of savouring by prediction error and its effects on choice. eLife, Apr. 21(5), e13747. https://doi.org/10.7554/eLife.13747.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology. Holt.Google Scholar
Kobayashi, K., Ravaioli, S., Baranès, A., Woodford, M., & Gottlieb, J. (2019). Diverse motives for human curiosity. Nature Human Behavior., 3(6), 587595. https://doi.org/10.1038/s41562-019-0589-3.CrossRefGoogle ScholarPubMed
Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 12921298. https://doi.org/nn.2635%5Bpii%5D10.1038/nn.2635.Google Scholar
Krauzlis, R. J., Lovejoy, L. P., & Zenon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165182. https://doi.org/10.1146/annurev-neuro-062012-170249.CrossRefGoogle ScholarPubMed
Leong, Y., Radulescu, A., Daniel, R., DeWoskin, V., & Niv, Y. (2017). Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron, 93(2), 451463.CrossRefGoogle ScholarPubMed
Loewenstein, G. (1987). Anticipation and the valuation of delayed consumption. The Economic Journal, 97(387), 666684.Google Scholar
Maunsell, J. H. (2004). Neuronal representations of cognitive state: reward or attention? Trends in Cognitive Science, 8(6), 261265.CrossRefGoogle ScholarPubMed
Morvan, C., & Maloney, L. (2012). Human visual search does not maximize the post-saccadic probability of identifying targets. PLoS Computational Biology, 8(2), e1002342. https://doi.org/10.1371/journal.pcbi.1002342.Google Scholar
Najemnik, J., & Geisler, W. S. (2008). Eye movement statistics in humans are consistent with an optimal search strategy. Journal of Vision, 8 (3), 114. https://doi.org/10.1167/8.3.4/8/3/4/ [pii].CrossRefGoogle ScholarPubMed
Nelson, J., McKenzie, C., Cottrell, G., & Sejnowski, T. (2010). Experience matters: Information acquisition optimizes probability gain. Psychological Science, 21(7), 960969.CrossRefGoogle ScholarPubMed
Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 34193432. https://doi.org/10.1162/jocn_a_00011.Google Scholar
Rothe, A., Lake, B., & Gureckis, T. M. (2016). Asking and evaluating natural language questions. In Papafragou, A, Grodner, D, Mirman, D, & Trueswell, J. C (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 20512056). Austin, TX: Cognitive Science Society.Google Scholar
Sharot, T., & Sunstein, C. R. (2020). How people decide what they want to know. Nature Human Behavior, 4(1), 1419. https://doi.org/10.1038/s41562-019-0793-1.Google Scholar
Shenhav, A., Botvinick, M., & Cohen, J. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217240.Google Scholar
Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience, 40, 99124. https://doi.org/10.1146/annurev-neuro-072116–031526.Google Scholar
Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner. PLoS Computational Biology, 14(8), e1006370. https://doi.org/10.1371/journal.pcbi.1006370.Google Scholar
Simons, D. J. (2000). Attentional capture and inattentional blindness. Trends in Cognitive Science, 4(4), 147155. https://doi.org/10.1016/s1364-6613(00)01455-8.CrossRefGoogle ScholarPubMed
Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the representation of value in the parietal cortex. Science, 304(5678), 17821787.Google Scholar
Taghizadeh, B., Foley, N. C., Karimimehr, S., Cohanpour, M., Semework, M., Sheth, S. A., … Gottlieb, J. (2020). Reward uncertainty asymmetrically affects information transmission within the monkey fronto-parietal network. Communications Biology, 3(1), 594. https://doi.org/10.1038/s42003-020-01320-6.Google Scholar
Tatler, B. W., Hayhoe, M. N., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: reinterpreting salience. Journal of Vision, 11(5), 525.Google Scholar
Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 251262.Google ScholarPubMed
Wei, X. X., & Stocker, A. A. (2015). A Bayesian observer model constrained by efficient coding can explain “anti-Bayesian” percepts. Nature Neuroscience 18(10), 15091517.Google Scholar
Yang, S. C., Lengyel, M., & Wolpert, D. M. (2016). Active sensing in the categorization of visual patterns. eLife. https://doi.org/10.7554/eLife.12215.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×