Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:46:08.710Z Has data issue: false hasContentIssue false

2 - Development and Structure of Cementum

from Part I - The Biology of Cementum

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

This chapter summarizes cementum biology knowledge, formation, types, composition, and clinical aspects. Two main types of cementum exist on human tooth roots. Acellular cementum (AC) covers cervical root surfaces and cellular cementum (CC) covers apical and furcation regions. Cementogenesis occurs during root formation following completion of the crown. Cementum formation includes deposition and mineralization of collagen fibers on root dentin surface by cementoblasts. The slow appositional growth of AC throughout life incorporates Sharpey’s fibers to anchor teeth to the alveolar bone. CC formation is initiated around the time the tooth enters occlusion. Cementum is composed of approximately 45-50% inorganic material by weight, primarily hydroxyapatite. The organic component includes multiple types of collagens and non-collagenous proteins such as bone sialoprotein and osteopontin, that may regulate mineralization and other properties. In considering the use of tooth root cementum to estimate ages of human samples, various circumstances may affect cementum structure, growth, or other properties and should be considered during analysis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ababneh, K. T., Hall, R. C., and Embery, G.. 1998. Immunolocalization of glycosaminoglycans in ageing, healthy and periodontally diseased human cementum. Arch Oral Biol 43 (3): 235–46.Google Scholar
Ababneh, K. T., Hall, R. C., and Embery, G. 1999. The proteoglycans of human cementum: Immunohistochemical localization in healthy, periodontally involved and ageing teeth. J Periodontal Res 34 (2): 8796.Google Scholar
Aidos, H., Diogo, P., and Santos, J. M.. 2018. Root resorption classifications: A narrative review and a clinical aid proposal for routine assessment. Eur Endod J 3 (3): 134–45.Google Scholar
Alfaqeeh, S. A., Gaete, M., and Tucker, A. S.. 2013. Interactions of the tooth and bone during development. J Dent Res 92(12): 1129–35.CrossRefGoogle ScholarPubMed
Andujar, M. B., Hartmann, D. J., Emonard, H., and Magloire, H.. 1988. Distribution and synthesis of type I and type III collagens in developing mouse molar tooth root. Histochemistry 88 (2): 131–40.CrossRefGoogle ScholarPubMed
Arshad, A. I., Ahmad, P., Dummer, P. M. H., Alam, M. K., Asif, J. A., Mahmood, Z., Rahman, N. A., and Mamat, N.. 2020. Citation classics on dental caries: A systematic review. Eur J Dent 14 (1): 128–43.Google Scholar
Arzate, H., Zeichner-David, M., and Mercado-Celis, G.. 2015. Cementum proteins: Role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67 (1): 211–33.CrossRefGoogle ScholarPubMed
Ballard, D. J., Jones, A. S., Petocz, P., and Darendeliler, M. A.. 2009. Physical properties of root cementum: Part 11. Continuous vs intermittent controlled orthodontic forces on root resorption. A microcomputed-tomography study. Am J Orthod Dentofacial Orthop 136 (1): 8.e1–8; discussion 89.CrossRefGoogle ScholarPubMed
Barrios-Garay, K., Agudelo-Sanchez, L., Aguirre-Urizar, J., and Gay-Escoda, C.. 2020. Analyses of odontogenic tumours: The most recent classification proposed by the World Health Organization (2017). Med Oral Patol Oral Cir Bucal 25(6): e7328.CrossRefGoogle ScholarPubMed
Bartlett, J. D. 2013. Dental enamel development: Proteinases and their enamel matrix substrates. ISRN Dent 2013: 684607.Google Scholar
Becker, J., Schuppan, D., Rabanus, J. P., Rauch, R., Niechoy, U., and Gelderblom, H. R.. 1991. Immunoelectron microscopic localization of collagens type I, V, VI and of procollagen type III in human periodontal ligament and cementum. J Histochem Cytochem 39 (1): 103–10.CrossRefGoogle Scholar
Beertsen, W., Van den Bos, T., and Everts, V.. 1990. The possible role of alkaline phosphatase in acellular cementum formation. J Biol Buccale 18 (3): 203–5.Google ScholarPubMed
Birkedal-Hansen, H., Butler, W. T., and Taylor, R. E.. 1977. Proteins of the periodontium. Characterization of the insoluble collagens of bovine dental cementum. Calcif Tissue Res 23 (1): 3944.Google Scholar
Bonewald, L. F. 2011. The amazing osteocyte. J Bone Miner Res 26 (2): 229–38.Google Scholar
Boskey, A. L., Spevak, L., Paschalis, E., Doty, S. B., and McKee, M. D.. 2002. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71 (2): 145–54.CrossRefGoogle ScholarPubMed
Bosshardt, D. D., and Schroeder, H. E.. 1992. Initial formation of cellular intrinsic fiber cementum in developing human teeth. A light- and electron-microscopic study. Cell Tissue Res 267 (2): 321–35.Google Scholar
Bosshardt, D. D., and Schroeder, H. E. 1996. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec 245 (2): 267–92.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bosshardt, D. D., and Sculean, A.. 2009. Does periodontal tissue regeneration really work? Periodontol 2000 51: 208–19.Google Scholar
Bosshardt, D. D., and Selvig, K. A.. 1997. Dental cementum: The dynamic tissue covering of the root. Periodontol 2000 13: 4175.Google Scholar
Bosshardt, D., Luder, H. U., and Schroeder, H. E.. 1989. Rate and growth pattern of cementum apposition as compared to dentine and root formation in a fluorochrome-labelled monkey (Macaca fascicularis). J Biol Buccale 17 (1): 313.Google Scholar
Bosshardt, D. D. 2005. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84 (5): 390406.Google Scholar
Bosshardt, D. D., and Schroeder, H. E.. 1991. Initiation of acellular extrinsic fiber cementum on human teeth. A light- and electron-microscopic study. Cell Tissue Res 263 (2): 311–24.Google ScholarPubMed
Bosshardt, D. D., and Schroeder, H. E. 1996. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec 245 (2): 267–92.Google Scholar
Bosshardt, D. D., Zalzal, S., McKee, M. D., and Nanci, A.. 1998. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250 (1): 1333.Google Scholar
Brezniak, N., and Wasserstein, A.. 2002. Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod 72 (2): 175–9.Google Scholar
Butler, W. T. 1998. Dentin matrix proteins. Eur J Oral Sci 106 Suppl 1: 204–10.CrossRefGoogle ScholarPubMed
Chan, E., and Darendeliler, M. A.. 2006. Physical properties of root cementum: Part 7: Extent of root resorption under areas of compression and tension. Am J Orthod Dentofacial Orthop 129 (4): 504–10.CrossRefGoogle ScholarPubMed
Cho, M. I., and Garant, P. R.. 1988. Ultrastructural evidence of directed cell migration during initial cementoblast differentiation in root formation. J Periodontal Res 23 (4): 268–76.CrossRefGoogle ScholarPubMed
Darcey, J., and Qualtrough, A.. 2013. Resorption: Part 1: Pathology, classification and aetiology. Br Dent J 214 (9): 439–51.Google Scholar
Darendeliler, M. A., Kharbanda, O. P., Chan, E. K., Srivicharnkul, P., Rex, T., Swain, M. V., Jones, A. S., and Petocz, P.. 2004. Root resorption and its association with alterations in physical properties, mineral contents and resorption craters in human premolars following application of light and heavy controlled orthodontic forces. Orthod Craniofac Res 7 (2): 7997.Google Scholar
Diekwisch, T. G. 2001. The developmental biology of cementum. Int J Dev Biol 45 (5–6): 695706.Google ScholarPubMed
Embery, G., Hall, R., Waddington, R., Septier, D., and Goldberg, M.. 2001. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12 (4): 331–49.CrossRefGoogle ScholarPubMed
Fleischmannova, J., Matalova, E., Sharpe, P. T., Misek, I., and Radlanski, R. J.. 2010. Formation of the tooth-bone interface. J Dent Res 89 (2): 108–15.CrossRefGoogle ScholarPubMed
Foster, B. L. 2012. Methods for studying tooth root cementum by light microscopy. Int J Oral Sci 4 (3): 119–28.Google Scholar
Foster, B. L. 2017. On the discovery of cementum. J Periodontal Res 52 (4): 666–85.Google Scholar
Foster, B. L., Ao, M., Salmon, C. R., Chavez, M. B., Kolli, T. N., Tran, A. B., Chu, E. Y., Kantovitz, K. R., Yadav, M., Narisawa, S., Millan, J. L., Nociti, F. H., Jr., and Somerman, M. J.. 2018. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone 107: 196207.Google Scholar
Foster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Jr., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., and Somerman, M. J.. 2015. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78: 150–64.Google Scholar
Foster, B. L., Nagatomo, K. J., Nociti, F. H., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millán, J. L., and Somerman, M. J.. 2012. Central role of pyrophosphate in acellular cementum formation. PLoS One 7 (6): e38393.Google Scholar
Foster, B. L., Nociti, F. H., Jr., and Somerman, M. J.. 2014. The rachitic tooth. Endocr Rev 35 (1): 134.CrossRefGoogle ScholarPubMed
Foster, B. L., Popowics, T. E., Fong, H. K., and Somerman, M. J.. 2007. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47126.CrossRefGoogle ScholarPubMed
Foster, B. L., Ramnitz, M. S., Gafni, R. I., Burke, A. B., Boyce, A. M., Lee, J. S., Wright, J. T., Akintoye, S. O., Somerman, M. J., and Collins, M. T.. 2014. Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res 93 (7 Suppl): 7S19S.CrossRefGoogle ScholarPubMed
Foster, B. L., Soenjaya, Y., Nociti, F. H., Jr., Holm, E., Zerfas, P. M., Wimer, H. F., Holdsworth, D. W., Aubin, J. E., Hunter, G. K., Goldberg, H. A., and Somerman, M. J.. 2013. Deficiency in acellular cementum and periodontal attachment in bsp null mice. J Dent Res 92 (2): 166–72.CrossRefGoogle ScholarPubMed
Foster, B. L., Nociti, F. H., Jr., and Somerman, M. J.. 2013. Tooth Root Formation. In Stem Cells, Craniofacial Development and Regeneration, eds. Huang, G. T. J. and Thesleff, I.. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Ganss, B., Kim, R. H., and Sodek, J.. 1999. Bone sialoprotein. Crit Rev Oral Biol Med 10 (1): 7998.Google Scholar
Garg, N., and Garg, A.. 2018. Textbook of Endodontics, 3rd ed. New Delhi: JayPee Brothers.Google Scholar
Goldberg, M., Kulkarni, A. B., Young, M., and Boskey, A.. 2011. Dentin: Structure, composition and mineralization. Front Biosci (Elite Ed) 3: 711–35.Google ScholarPubMed
Groeneveld, M. C., Everts, V., and Beertsen, W.. 1995. Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: Its relation to cementum formation. J Dent Res 74 (7): 1374–81.Google Scholar
Groeneveld, M. C., Van den Bos, T., Everts, V., and Beertsen, W.. 1996. Cell-bound and extracellular matrix-associated alkaline phosphatase activity in rat periodontal ligament. Experimental Oral Biology Group. J Periodontal Res 31 (1): 73–9.Google Scholar
Heitz-Mayfield, L. J., Trombelli, L., Heitz, F., Needleman, I., and Moles, D.. 2002. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J Clin Periodontol 29 (Suppl 3): 92–102; discussion 160–2.Google Scholar
Ho, S. P., Balooch, M., Marshall, S. J., and Marshall, G. W.. 2004. Local properties of a functionally graded interphase between cementum and dentin. J Biomed Mater Res A 70 (3): 480–9.Google Scholar
Ho, S. P., Kurylo, M. P., Grandfield, K., Hurng, J., Herber, R. P., Ryder, M. I., Altoe, V., Aloni, S., Feng, J. Q., Webb, S., Marshall, G. W., Curtis, D., Andrews, J. C., and Pianetta, P.. 2013. The plastic nature of the human bone-periodontal ligament-tooth fibrous joint. Bone 57 (2): 455–67.Google Scholar
Holliday, S., Schneider, B., Galang, M. T., Fukui, T., Yamane, A., Luan, X., and Diekwisch, T. G.. 2005. Bones, teeth, and genes: A genomic homage to Harry Sicher’s “Axial Movement of Teeth.World J Orthod 6 (1): 6170.Google Scholar
Hu, J. C., Chun, Y. H., Al Hazzazzi, T., and Simmer, J. P.. 2007. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 186 (1): 7885.Google Scholar
Huang, X., Bringas, P., Jr., Slavkin, H. C., and Chai, Y.. 2009. Fate of HERS during tooth root development. Dev Biol 334 (1): 2230.Google Scholar
Liang, Y., Luan, X., and Liu, X.. 2020. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 5 (2): 297308.Google ScholarPubMed
Luan, X., Ito, Y., and Diekwisch, T. G.. 2006. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn 235 (5): 1167–80.Google Scholar
Luan, X., Ito, Y., Holliday, S., Walker, C., Daniel, J., Galang, T. M., Fukui, T., Yamane, A., Begole, E., Evans, C., and Diekwisch, T. G.. 2007. Extracellular matrix-mediated tissue remodeling following axial movement of teeth. J Histochem Cytochem 55 (2): 127–40.Google Scholar
Lungova, V., Radlanski, R. J., Tucker, A. S., Renz, H., Misek, I., and Matalova, E.. 2011. Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J Anat 218 (6): 699716.Google Scholar
MacNeil, R. L., Berry, J., D’Errico, J., Strayhorn, C., Piotrowski, B., and Somerman, M. J.. 1995. Role of two mineral-associated adhesion molecules, osteopontin and bone sialoprotein, during cementogenesis. Connect Tissue Res 33 (1–3): 17.Google Scholar
McKee, M. D., and Nanci, A. 1995. Post-embedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech 31: 4462.Google Scholar
MacNeil, R. L., Berry, J. E., Strayhorn, C. L., Shigeyama, Y., and Somerman, M. J.. 1998. Expression of type I and XII collagen during development of the periodontal ligament in the mouse. Arch Oral Biol 43 (10): 779–87.CrossRefGoogle ScholarPubMed
Marks, S. C., Jr., and Schroeder, H. E.. 1996. Tooth eruption: Theories and facts. Anat Rec 245 (2): 374–93.Google Scholar
McKee, M. D., Zalzal, S., and Nanci, A.. 1996. Extracellular matrix in tooth cementum and mantle dentin: Localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245 (2): 293312.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Naji, S., Colard, T., Bertrand, B., D’Incau, E., Lanteri, L., Brandt, E., and Blondiaux, J.. 2013. Cementochronology, to cut or not to cut? Am J Phys Anthropol 150: 204–5.Google Scholar
Nanci, A. 2018. Periodontium. In Ten Cate’s Oral Histology. St. Louis, MO: Elsevier.Google Scholar
Nanci, A., and Somerman, M. J.. 2008. Periodontium. In Ten Cate’s Oral Histology: Development, Structure, and Function, ed. Nanci, A.. St. Louis, MO: Mosby.Google Scholar
Neely, A. L., Thumbigere-Math, V., Somerman, M. J., and Foster, B. L.. 2016. A familial pattern of multiple idiopathic cervical root resorption with a 30-year follow-up. J Periodontol 87 (4): 426–33.Google Scholar
Nel, C., Yakoob, Z., Schouwstra, C. M., and van Heerden, W. F.. 2020. Familial florid cemento-osseous dysplasia: A report of three cases and review of the literature. Dentomaxillofac Radiol 50(1): 20190486.Google Scholar
Newman, M., Takei, H., Klokkevold, P., and Carranza, F.. 2018. Newman and Carranza’s Clinical Periodontology, 13th ed. Philadelphia: Elsevier.Google Scholar
Prasad, M., Butler, W. T., and Qin, C.. 2010. Dentin sialophosphoprotein in biomineralization. Connect Tissue Res 51 (5): 404–17.Google Scholar
Proffit, W. R., Fields, H. W., Larson, B. E., and Sarver, D. M.. 2018. Contemporary Orthodontics, 6th ed. Philadelphia: Elsevier.Google Scholar
Rajendran, A., and Sivapathasundharam, B.. 2012. Shafer’s Textbook of Oral Pathology, 7th ed. New Delhi: Elsevier.Google Scholar
Renvoise, E., and Michon, F.. 2014. An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Front Physiol 5: 324.Google ScholarPubMed
Sawada, T., Ishikawa, T., Shintani, S., and Yanagisawa, T.. 2012. Ultrastructural immunolocalization of dentin matrix protein 1 on Sharpey’s fibers in monkey tooth cementum. Biotech Histochem 87 (5): 360–5.Google Scholar
Schatzle, M., Tanner, S. D., and Bosshardt, D. D.. 2005. Progressive, generalized, apical idiopathic root resorption and hypercementosis. J Periodontol 76 (11): 2002–11.Google Scholar
Sequeira, P., Bosshardt, D. D., and Schroeder, H. E.. 1992. Growth of acellular extrinsic fiber cementum (AEFC) and density of inserting fibers in human premolars of adolescents. J Periodontal Res 27 (2): 134–42.Google Scholar
Sodek, J., Ganss, B., and McKee, M. D.. 2000. Osteopontin. Crit Rev Oral Biol Med 11 (3): 279303.Google Scholar
Sodek, J., and McKee, M. D.. 2000. Molecular and cellular biology of alveolar bone. Periodontol 2000 24: 99126.Google Scholar
Sodek, J., and McKee, M. D. 2000. Molecular and cellular biology of alveolar bone. Periodontol 2000 24: 99126.Google Scholar
Takano, Y., Sakai, H., Watanabe, E., Ideguchi-Ohma, N., Jayawardena, C. K., Arai, K., Asawa, Y., Nakano, Y., Shuda, Y., Sakamoto, Y., and Terashima, T.. 2003. Possible role of dentin matrix in region-specific deposition of cellular and acellular extrinsic fibre cementum. J Electron Microsc (Tokyo) 52 (6): 573–80.CrossRefGoogle ScholarPubMed
Thomas, H. F. 1995. Root formation. Int J Dev Biol 39 (1): 231–7.Google Scholar
Thumbigere-Math, V., Sabino, M. C., Gopalakrishnan, R., Huckabay, S., Dudek, A. Z., Basu, S., Hughes, P. J., Michalowicz, B. S., Leach, J. W., Swenson, K. K., Swift, J. Q., Adkinson, C., and Basi, D. L.. 2009. Bisphosphonate-related osteonecrosis of the jaw: Clinical features, risk factors, management, and treatment outcomes of 26 patients. J Oral Maxillofac Surg 67 (9): 1904–13.Google Scholar
Toyosawa, S., Okabayashi, K., Komori, T., and Ijuhin, N.. 2004. mRNA expression and protein localization of dentin matrix protein 1 during dental root formation. Bone 34 (1): 124–33.Google Scholar
van Bezooijen, R. L., Bronckers, A. L., Gortzak, R. A., Hogendoorn, P. C., van der Wee-Pals, L., Balemans, W., Oostenbroek, H. J., Van Hul, W., Hamersma, H., Dikkers, F. G., Hamdy, N. A., Papapoulos, S. E., and Lowik, C. W.. 2009. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res 88 (6): 569–74.CrossRefGoogle ScholarPubMed
Van den Bos, T., Bronckers, A. L., Goldberg, H. A., and Beertsen, W.. 1999. Blood circulation as source for osteopontin in acellular extrinsic fiber cementum and other mineralizing tissues. J Dent Res 78 (11): 1688–95.Google Scholar
Veis, A. 1993. Mineral-matrix interactions in bone and dentin. J Bone Miner Res 8 (Suppl 2): S493–7.Google ScholarPubMed
Walker, C. G., Ito, Y., Dangaria, S., Luan, X., and Diekwisch, T. G.. 2008. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model. Eur J Oral Sci 116 (4): 312–8.CrossRefGoogle Scholar
Wan, J. T., Sheeley, D. M., Somerman, M. J., and Lee, J. S.. 2020. Mitigating osteonecrosis of the jaw (ONJ) through preventive dental care and understanding of risk factors. Bone Res 8: 14.Google Scholar
Wang, H. M., Nanda, V., Rao, L. G., Melcher, A. H., Heersche, J. N., and Sodek, J.. 1980. Specific immunohistochemical localization of type III collagen in porcine periodontal tissues using the peroxidase-antiperoxidase method. J Histochem Cytochem 28 (11): 1215–23.Google Scholar
Winter, B. U., Stenvik, A., and Vandevska-Radunovic, V.. 2009. Dynamics of orthodontic root resorption and repair in human premolars: a light microscopy study. Eur J Orthod 31 (4): 346–51.Google Scholar
Wise, G. E., and King, G. J.. 2008. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87 (5): 414–34.Google Scholar
Yamamoto, T., Hasegawa, T., Yamamoto, T., Hongo, H., and Amizuka, N.. 2016. Histology of human cementum: Its structure, function, and development. Jpn Dent Sci Rev 52 (3): 6374.CrossRefGoogle ScholarPubMed
Ye, L., Zhang, S., Ke, H., Bonewald, L. F., and Feng, J. Q.. 2008. Periodontal breakdown in the Dmp1 null mouse model of hypophosphatemic rickets. J Dent Res 87 (7): 624–9.Google Scholar
Zhao, N., Foster, B. L., and Bonewald, L. F.. 2016. The cementocyte – An osteocyte relative? J Dent Res 95 (7): 734–41.Google Scholar
Zhao, N., Nociti, F. H. Jr., Duan, P., Prideaux, M., Zhao, H., Foster, B. L., Somerman, M. J., and Bonewald, L. F.. 2016. Isolation and functional analysis of an immortalized murine cementocyte cell line, IDG-CM6. J Bone Miner Res 31 (2): 430–42.Google Scholar
Zweifler, L. E., Patel, M. K., Nociti, F. H., Wimer, H. F., Millan, J. I., Somerman, M. J., and Foster, B. L.. 2014. Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis. Int J Oral Sci. In press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×