Minuscule representations occur in a variety of contexts in mathematics and physics. They are typically much easier to understand than representations in general, which means they give rise to relatively easy constructions of algebraic objects such as Lie algebras and Weyl groups. This book describes a combinatorial approach to minuscule representations of Lie algebras using the theory of heaps, which for most practical purposes can be thought of as certain labelled partially ordered sets. This leads to uniform constructions of (most) simple Lie algebras over the complex numbers and their associated Weyl groups, and provides a common framework for various applications. The topics studied include Chevalley bases, permutation groups, weight polytopes and finite geometries. Ideal as a reference, this book is also suitable for students with a background in linear and abstract algebra and topology. Each chapter concludes with historical notes, references to the literature and suggestions for further reading.
'This monograph could be read with profit not only by the specialist, but also by an interested graduate student with some background on Lie algebras.'
Felipe Zaldivar Source: MAA Reviews
'The exposition [is] very clear. The book is strongly recommended to students and researchers who are interested in combinatorial aspects of representation theory.'
Hiro-Fumi Yamada Source: Mathematical Reviews
'… useful as a book for students, the book under review is particularly useful as a reference for researchers of relevant fields.'
Qendrim R. Gashi Source: Zentralblatt MATH
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.