Skip to main content Accessibility help
×
  • Cited by 48
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      May 2011
      July 2010
      ISBN:
      9780511777059
      9780521889308
      Dimensions:
      (247 x 174 mm)
      Weight & Pages:
      0.74kg, 328 Pages
      Dimensions:
      Weight & Pages:
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    The theory of relativity describes the laws of physics in a given space-time. However, a physical theory must provide observational predictions expressed in terms of measurements, which are the outcome of practical experiments and observations. Ideal for readers with a mathematical background and a basic knowledge of relativity, this book will help readers understand the physics behind the mathematical formalism of the theory of relativity. It explores the informative power of the theory of relativity, and highlights its uses in space physics, astrophysics and cosmology. Readers are given the tools to pick out from the mathematical formalism those quantities that have physical meaning and which can therefore be the result of a measurement. The book considers the complications that arise through the interpretation of a measurement, which is dependent on the observer who performs it. Specific examples of this are given to highlight the awkwardness of the problem.

    Reviews

    '… a wide-reaching book that covers a lot of material … will reward the diligent reader.'

    Source: The Observatory

    'The book is written in a very pedagogical and transparent style and it helps the reader to understand physics behind the mathematical formalism of the theory. I recommend this book to researchers and graduate students of general relativity, astrophysics, cosmology and related areas. For students, the section Exercises containing one hundred problems forms also a very useful addition.'

    Source: Zentralblatt MATH

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    References
    References
    Abramowicz, M. A. and Calvani, M. (1979) Spinning particles orbiting the Kerr Black Hole. Monthly Notices of the Royal Astronomical Society 169, 21
    Abramowicz, M. A. and Lasota, J. P. (1974) A note on a paradoxical property of the Schwarzschild solution. Acta Physica Polonica B5, 327
    Audretsch, J. and Lämmerzahl, C. (1983) Local and nonlocal measurements of the Riemann tensor. General Relativity and Gravitation 15, 495
    Bardeen, J. M. (1970) Kerr metric black holes. Nature 226, 64
    Bardeen, J. M., Press, W. H., and Teukolsky, S. A. (1972) Rotating black holes: locally non rotating frames, energy extraction and scalar synchroton radiation. Astrophysical Journal 178, 347
    Begelman, M. C., Blandford, R. D., and Rees, M. J. (1984) Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255
    Bel, L. (1958) Sur la radiation gravitationelle. Academie des Sciences Paris, Comptes Rendus 247, 1094
    Bičak, J., Katz, J., and Lynden-Bell, D. (2008) Gravitational waves and dragging effects. Classical and Quantum Gravity 25, 165017
    Bini, D., Carini, P., and Jantzen, R. T. (1997a) The intrinsic derivative and centrifugal forces in general relativity: I. Theoretical foundations. International Journal of Modern Physics D 6, 1–38
    Bini, D., Carini, P., and Jantzen, R. T. (1997b) The intrinsic derivative and centrifugal forces in general relativity: II. Applications to circular orbits in some familiar stationary axisymmetric spacetimes. International Journal of Modern Physics D 6, 143
    Bini, D., Cherubini, C., Geralico, A., and Jantzen, R. T. (2006) Massless spinning test particles in vacuum algebraically special spacetimes. International Journal of Modern Physics D 15, 737
    Bini, D., Cherubini, C., Geralico, A., and Ortolan, A. (2009) Dixon's extended bodies and weak gravitational waves. General Relativity and Gravitation 41, 105
    Bini, D., Crosta, M. T., and de Felice, F. (2003) Orbiting frames and satellite attitudes in relativistic astrometry. Classical and Quantum Gravity 20, 4695
    Bini, D. and de Felice, F. (2000) Gyroscopes and gravitational waves. Classical and Quantum Gravity 17, 4627
    Bini, D. and de Felice, F. (2003) Ray tracing in relativistic astrometry: the boundary value problem. Classical and Quantum Gravity 20, 2251
    Bini, D., de Felice, F., and Geralico, A. (2006) Strains in general relativity. Classical and Quantum Gravity 23, 7603
    Bini, D., Geralico, A., and Jantzen, R. T. (2005) Kerr metric, static observers and Fermi coordinates. Classical and Quantum Gravity 22, 4729
    Bini, D., Geralico, A., Ruggiero, M. L., and Tartaglia, A. (2008) On the emission coordinate system for the Earth. Classical and Quantum Gravity 25, 205011
    Bini, D. and Jantzen, R. T. (2004) Inertial forces: the special relativistic assessment. In Relativity in Rotating Frames: Relativistic Physics in Rotating Reference Frames, ed. G., Rizzi and M. L., Ruggiero. Fundamental Theories of Physics, vol. 135. London: Kluwer Academic Press, pp. 221–239
    Bini, D., Jantzen, R. T., and Mashhoon, B. (2002) Circular holonomy and clock effects in stationary axisymmetric spacetimes. Classical and Quantum Gravity 19, 17
    Bini, D., Jantzen, R. T., and Miniutti, G. (2002) Electromagnetic-like boost transformations of Weyl and minimal super-energy observers in black hole spacetimes. International Journal of Modern Physics D 11, 1439
    Bondi, H. (1980) Relativity and Common Sense, Dover edn. New York: Dover
    Bondi, H., Pirani, F. A. E., and Robinson, I. (1959) Gravitational waves in general relativity. III. Exact plane waves. Proceedings of the Royal Society A 251, 519
    Cardin, F. and Marigonda, A. (2004) Global world functions. Journal of Geometry and Symmetry in Physics 2, 1
    Carter, B. (1968) Global structure of the Kerr family of gravitational fields. Physical Review 174, 1559
    Castagnino, M. (1965) Sulle formule di Frenet-Serret per le curve nulle di una V4 riemanniana a metrica iperbolica normale. Rendiconti di Matematica, Roma 24, 438
    Cerdonio, M., Prodi, G. A., and Vitale, S. (1988) Dragging of inertial frames by the rotating Earth: proposal and feasibility for a ground-based detection. General Relativity and Gravitation 20, 83
    Chandrasekhar, S. (1983) The Mathematical Theory of Black Holes. Oxford: Clarendon Press
    Chicone, C. and Mashhoon, B. (2002) The generalized Jacobi equation. Classical and Quantum Gravity 19, 4231
    Chicone, C. and Mashhoon, B. (2005a) A gravitational mechanism for the acceleration of ultrarelativistic particles. Annalen der Physik 14, 751
    Chicone, C. and Mashhoon, B. (2005b) Ultrarelativistic motion: inertial and tidal effects in Fermi coordinates. Classical and Quantum Gravity 22, 195
    Choquet-Bruhat, Y., Dillard-Bleick, M. and Dewitt-Movette, C. (1977) Analysis, Manifolds, and Physics Amsterdam, North Holland Pub Co.
    Ciufolini, I. (1986) Generalized geodesic deviation equation. Physical Review D 34, 1014
    Ciufolini, I. and Demianski, M. (1986) How to measure the curvature of spacetime. Physical Review D 34, 1018
    Ciufolini, I. and Demianski, M. (1987) Erratum: How to measure the curvature of spacetime. Physical Review D 35, 773.
    Ciufolini, I. and Wheeler, J. A. (1995) Gravitation and Inertia. Princeton, NJ: Princeton University Press
    Cohen, J. M. and Mashhoon, B. (1993) Standard clocks, interferometry and gravitomagnetism. Physics Letters A 181, 353
    Cotton, E. (1899) Sur les variétés trois dimensions. Annales de la Faculté des Sciences, Toulouse II-1, 385
    Cunningham, C. T. and Bardeen, J. M. (1973) The optical appearance of a star orbiting an extreme Kerr black hole. Astrophysical Journal 183, 237
    de Felice, F. (1968) Equatorial geodesic motion in the gravitational field of a rotating source. Il Nuovo Cimento 57, 351
    de Felice, F. (1979) Effects of a gravitational wave on relativistic particles. Journal of Physics A: Mathematical and General 12, 1223
    de Felice, F. (1991) Rotating frames and measurements of forces in general relativity. Monthly Notices of the Royal Astronomical Society of London 252, 197
    de Felice, F. (1994) Kerr metric: the permitted angular velocity pattern and the pre-horizon regime. Classical and Quantum Gravity 11, 1283
    de Felice, F. (2006) L'intreccio spazio-temporale. La relatività dello spazio e del tempo: la sua origine e il suo mistero. Torino: Bollati Boringhieri Editore
    de Felice, F. and Clarke, C. J. S. (1990) Relativity on Curved Manifolds. Cambridge (UK): Cambridge University Press
    de Felice, F., Nobili, L., and Calvani, M. (1974) Black-hole physics: some effects of gravity on the radiation emission. Astronomy and Astrophysics 30, 111
    de Felice, F. and Preti, G. (2008) Ray tracing in relativistic astrometry: the satellite attitude error and the comprehensive error budget. Classical and Quantum Gravity 25, 165015
    de Felice, F. and Usseglio-Tomasset, S. (1991) On the pre-horizon regime in the Kerr metric. Classical and Quantum Gravity 8, 1871
    de Felice, F. and Usseglio-Tomasset, S. (1992) Circular orbits and relative strains in the Schwarszchild space-time. General Relativity and Gravitation 24, 1091
    de Felice, F. and Usseglio-Tomasset, S. (1993) Schwarzschild space-time: measurements in orbiting space-stations. Classical and Quantum Gravity 10, 353
    de Felice, F. and Usseglio-Tomasset, S. (1996) Strains and rigidity in black-hole physics. General Relativity and Gravitation 28, 179
    Dixon, W. G. (1964) A covariant multipole formalism for extended test bodies in general relativity. Il Nuovo Cimento 34, 318
    Dixon, W. G. (1970a) Dynamics of extended bodies in general relativity: I. Momentum and angular momentum. Proceedings of the Royal Society of London A 314, 499
    Dixon, W. G. (1970b) Dynamics of extended bodies in general relativity: II. Moments of charged-current vectors. Proceedings of the Royal Society of London A 319, 509
    Dixon, W. G. (1974) Dynamics of extended bodies in general relativity: III. Equations of motion. Philosophical Transaction of the Royal Society of London A, 277, 59
    Dixon, W. G. (1979) Dynamics of extended bodies in general relativity: their description and motion. Proceedings of Course 67 of the International School of Physics “Enrico Fermi.” ed. J., Ehlers. Amsterdam: North Holland
    Ehlers, J. and Rudolph, E. (1977) Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity. General Relativity and Gravitation 8, 197
    Einstein, A. (1905) Zur elektrodynamik bewegter körper. Annalen der Physik 17, 891
    Eisenhart, L. P. (1997) Riemannian Geometry, 8th edn. Princeton, NJ: Princeton University Press
    Ellis, G. F. R. (1971) Relativistic cosmology. In Sachs, R. K., ed., General Relativity and Cosmology, Proceedings of Course 47 of the International School of Physics “Enrico Fermi.” New York: Academic Press
    Ellis, G. F. R. and van Elst, H. (1998) Cargése Lectures 1998, e-print: gr-qc/9812046
    Fanton, C., Calvani, M., de Felice, F., and Cadez, A. (1997) Detecting accretion disks in active galactic nuclei. Pacific Astronomical Society of Japan 49, 159
    Faruque, S. B. (2004) Gravitomagnetic clock effect in the orbit of a spinning particle orbiting the Kerr black hole. Physics Letters A 327, 95
    Fayos, F. and Sopuerta, C. F. (1999) On the Papapetrou field in vacuum. Classical and Quantum Gravity 16, 2965
    Ferrarese, G. (1965) Proprietà di II ordine di un generico riferimento fisico in relatività generale. Rendconditi di Matematica, Roma 24, 57
    Ferrarese, G. and Bini, D. (2007) Introduction to Relativistic Continuum Mechanics. Lecture Notes in Physics 727. Berlin: Springer
    Fortini, P. and Ortolan, A. (1992) Space and time measurements in the field of a gravitational wave. Il Nuovo Cimento 107B, 1329
    Gödel, K. (1949) An example of a new type of cosmological solution of Einstein's field equations of gravitation. Reviews of Modern Physics 21, 447
    Gullstrand, A. (1922) Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv för Matematik, Astronomi och Fysik 16(8), 1–15
    Hawking, S. and Ellis, G. F. R. (1973) The Large Scale Structure of Space-Time. Cambridge (UK): Cambridge University Press
    Herrera, L., Paiva, F. M., and Santos, N. O. (2000) Gyroscope precession in cylindrically symmetric spacetimes. Classical and Quantum Gravity 17, 1549
    Israel, W. (1963) Relativistic kinetic theory of a simple gas. JMP 4, 1163
    Iyer, B. R. and Vishveshwara, C. V. (1993) Frenet-Serret description of gyroscopic precession. Physical Review D 48, 5706
    Jantzen, R. T., Carini, P., and Bini, D. (1992) The many faces of gravitoelectromagnetism. Annals of Physics 215, 1
    Karas, V. and Vokrouhlický, D. (1994) Relativistic precession of the orbit of a star near a supermassive black hole. Astrophysical Journal 422, 208
    Kasner, E. (1925) Solutions of the Einstein equations involving functions of only one variable. Transactions of the American Mathematical Society 27, 155
    Kerr, R. P. (1963) Gravitational field of a spinning mass as an example of algebraically special metric. Physical Review Letters 11, 237
    Kerr, R. P. and Shild, A. (1967) A new class of vacuum solutions of the Einstein field equations. Atti del Convegno sulla Relatività Generale Firenze, 222
    Kretschmann, E. (1915a) Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien (I). Annalen der Physik 48, 907–942
    Kretschmann, E. (1915b) Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien (II). Annalen der Physik 48, 943–982
    Krori, K. D., Chaudhury, T., and Mahanta, C. R. (1990) Geodetic precession in a quadrupole field. Physical Review D 42, 3584
    Landau, L. D. and Lifshitz, E. M. (1959) Fluid Mechanics. London: Pergamon Press
    Landau, L. D. and Lifshitz, E. M. (1975) The Classical Theory of Fields. New York: Pergamon Press
    Lathrop, J. D. (1973) Covariant description of motion in general relativity. Annals of Physics 79, 580
    Leaute, B. and Linet, B. (1983) Principle of equivalence and electromagnetism. International Journal of Theoretical Physics 22, 67
    Lense, J. and Thirring, H. (1918) Über den einfluß der eigenrotation der zentralkörper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie. Physicalische Zeitschrift 19, 156. English translation in Mashhoon B., Hehl F. W. and Theiss D. S. (1984) On the gravitational effects of rotating masses: the Thirring-Lense papers. General Relativity and Gravitation16, 711
    Li, L.-X., Zimmerman, E. R., Narayan, R., and McClintock, J. E. (2005) Multitemperature black body spectrum of a thin accretion disk around a Kerr black hole: model computations and comparison with observations. Astrophysical Journal Supplement 157, 335
    Lichtenegger, H. I. M., Gronwald, F., and Mashhoon, B. (2000) On detecting the gravitomagnetic field of the Earth by means of orbiting clocks. Advances in Space Research 25, 1255
    Maartens, R. and Bassett, B. A. (1998) Gravito-electromagnetism. Classical and Quantum Gravity 15, 705
    Mashhoon, B. (1988) Neutron interferometry in a rotating frame of reference. Physical Review Letters 61, 2639
    Mashhoon, B. (1995) On the coupling of intrinsic spin with the rotation of the Earth. General Relativity and Gravitation 31, 681
    Mashhoon, B. (1999) On the spin-rotation-gravity coupling. Physics Letters A 198, 9
    Mashhoon, B., Paik, H., and Will, C. (1989) Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer: theoretical principles. Physical Review D 39, 2825
    Mashhoon, B. and Theiss, D. S. (1982) Relativistic tidal forces and the possibility of measuring them. Physical Review Letters 49, 1542
    Mathisson, M. (1937) Neue mechanik materieller systeme. Acta Physica Polonica 6, 163
    Matsko, A. B., Yu, N., and Maleki, L. (2003) Gravity field measurements using cold atoms with direct optical readout. Physical Review A 67, 043819
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973) Gravitation. San Francisco: W. H. Freeman
    Mohseni, M. and Sepangi, H. R. (2000) Gravitational waves and spinning test particles. Classical and Quantum Gravity 17, 4615
    Mullari, T. and Tammelo, R. (2006) On the relativistic tidal effects in the second approximation. Classical and Quantum Gravity 23, 4047
    Newman, E. T., Couch, E., Chinnapared, K.et al. (1965) Metric of a rotating charged mass. Journal of Mathematical Physics (NY) 6, 918
    Newman, E. T. and Penrose, R. (1962) An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics (NY) 3, 566
    Nordström, G. (1918) On the energy of the gravitational field in Einstein's theory. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 20, 1238
    Novikov, I. D. and Thorne, K. S. (1973). Astrophysics of black holes. In Black Holes: Les Houches 1972. Lectures delivered at the Summer School of Theoretical Physics, University of Grenoble, ed. C., DeWitt and B. S., DeWitt. New York: Gordon and Breach pp. 343–450.
    Painlevé, P. (1921) La mécanique classique et la théorie de la relativité. Academie des Sciences de Paris, Comptes Rendus 173, 677–680
    Papapetrou, A. (1951) Spinning test particles in General Relativity I. Proceedings of the Royal Society of London A 230, 248
    Papapetrou, A. (1966) Champs gravitationnels stationnaires a symetrie axiale. Annales del' Institut Henri Poincaré A4, 83
    Pirani, F. A. E. (1956a) On the physical significance of the Riemann tensor. Acta Physica Polonica 15, 389
    Pirani, F. A. E. (1956b) Tetrad formulation of general relativity theory. Helvetica Physica Acta Supplementum 4, 198
    Polnarev, A. G. (1972) Radiation spectrum of a source moving in a stable circular orbit near a rotating black hole. Astrophysics 8, 273
    Rauch, K. D. and Blandford, R. D. (1994) Optical caustics in a Kerr spacetime and the origin of rapid X-ray variability in active galactic nuclei. Astrophysical Journal 421, 46
    Rees, M. (1988) Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528
    Rees, M. (1998) Astrophysical evidence for black holes. In Black Holes and Relativistic Stars, ed. R. M., Wald. Chicago: University of Chicago Press, pp. 79–101
    Rees, M., Ruffini, R. and Wheeler, J. A. (1974) Black Holes, Gravitational Waves and CosmologyGarden and Breach, New York
    Reissner, H. (1916) Über die eigengravitation des elektrischen feleds nach der Einsteinschen theorie. Annalen der Physik 50, 106
    Rindler, W. and Perlick, V. (1990) Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession. General Relativity and Gravitation 22, 1067
    Rovelli, C. (2002) GPS observables in general relativity. Physical Review D 65, 044017
    Ruffini, R. (1973) On the Energetics of Black Holes in: Black Holes, DeWitt, C. and DeWitt, B. S. eds. Garden and Breach, New York
    Ruffini, R. (1978) Physics outside the horizon of a black hole in: Physics and astrophysics of neutron stars and black holes. (A79-19101 06-90) Bologna, Society italiana di Fisica; Amsterdam, North Holland Publishing Co., 1978, p. 287–355
    Ruse, H. S. (1931) Taylor's theorem in the tensor calculus. Proceedings of the London Mathematical Society 32, 87
    Schouten, J. A. (1954) Ricci Calculus. Berlin: Springer
    Schwarzschild, K. (1916a) Uber das gravitationsfeld einer massenpunktes nach der Einsteinschen theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaft Zu Berlin189
    Schwarzschild, K. (1916b) Uber das gravitationsfeld einer kugel aus incompressible flussigkeit nach der Einsteinschen theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaft Zu Berlin424
    Semerák, O. (1994) On the competition of forces in the Kerr field. Astronomy and Astrophysics 291, 679
    Semerák, O. (1995) What forces drive the relativistic motion? Il Nuovo Cimento B 110, 973
    Semerák, O. (1996) What forces act in relativistic gyroscope precession? Classical and Quantum Gravity 13, 2987
    Semerák, O. and de Felice, F. (1997) Quasi-local measurements and orientation in black-hole fields. Classical and Quantum Gravity 14, 2381
    Semerák, O., Karas, V., and de Felice, F. (1999) Parameters of black holes in sources with periodic variability. Publications of the Astronomical Society of Japan 51, 571 (see Appendix of astro-ph/9802025 for details)
    Simon, W. (1984) Characterization of the Kerr metric. General Relativity and Gravitation 16, 465
    Sorge, F., Bini, D., and de Felice, F. (2001) Gravitational waves, gyroscopes and frame dragging. Classical and Quantum Gravity 18, 2945–2958
    Stephani, H., Kramer, D., MacCallum, M., Hoenselars, C., and Hertl, E. (2003) Exact Solutions to Einstein's Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge (UK): Cambridge University Press
    Synge, J. L. (1960) Relativity: The General Theory. Amsterdam: North Holland
    Szekeres, P. (1965) The gravitational compass. Journal of Mathematical Physics (NY) 6, 1387
    Taylor, J. H. and Weisberg, J. M. (1989) Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16. Astrophysical Journal, 345, 434
    Teyssandier, P., Le Poncin-Lafitte, C. B., and Linet, B. (2008) A universal tool for determining the time delay and the frequency shift of light: Synge's world function. In Laser, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Springer series in Astrophysics and Space Science Library, vol. 349, ed. H., Dittus, C., Lämmerzahl and S. G., Turyshev. Berlin: Springer, p. 153
    Tod, K. P., de Felice, F., and Calvani, M. (1976) Spinning test particles in the field of a black hole. Il Nuovo cimento B, 34, 365
    Vessiot, E. C. (1905) Sur les curbes minima. Comptes Rendus 140, 1381
    Wald, R. M. (1974) Black hole in a uniform magnetic field. Physical Review D 10, 1680
    Wald, R. M. (1984) General Relativity. Chicago: University of Chicago Press
    Warner, N. P. and Buchdahl, H. A. (1980) On the world function of the Gödel metric. Journal of Physics A: Mathematical and General 13, 509
    Wilkins, D. C. (1972) Bound geodesics in the Kerr metric. Physical Review D 5, 814
    Will, C. (1981) Theory and Experiment in Gravitational Physics. Cambridge: Cambridge University Press

    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.