Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T21:43:58.559Z Has data issue: false hasContentIssue false

6 - The Untapped Potential of Zoo and Aquarium Data for the Comparative Biology of Ageing

Published online by Cambridge University Press:  14 November 2024

Jean-François Lemaître
Affiliation:
Centre National de la Recherche Scientifique (CNRS)
Samuel Pavard
Affiliation:
National Museum of Natural History, Paris
Get access

Summary

Advances in comparative ageing research strongly depend on data quality and quantity. Across the world, zoos and aquariums gather data on the physiology, morphology, health and demography of the animals under their care to facilitate their management. Many of these data are hosted in a centralized database, the Species360 Zoological Information Management System (ZIMS). As of 2022, ZIMS held records on ~10 million individuals across 22,000 species and over 1200 member institutions, with historical animal records dating back to the mid-1800s. These millions of age-specific data could enable analyses testing hypotheses at individual and species levels and between species with vastly different life history strategies. This chapter summarizes the diversity of questions (ranging from evolutionary theories to mechanistic hypotheses) for ageing research that could be addressed using data from zoo and aquarium populations. In addition, many of these studies could inform the management and conservation of animals, not only in zoos and aquariums, but also in the wild.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nussey, D.H., Coulson, T., Festa-Bianchet, M., Gaillard, J.-M. 2008. Measuring senescence in wild animal populations: towards a longitudinal approach. Funct. Ecol. 22, 393406 (doi:10.1111/j.1365-2435.2008.01408.x).CrossRefGoogle Scholar
De Magalhães, J.P. 2006. Species selection in comparative studies of aging and antiaging research. In Handbook of Models for Human Aging (ed. Conn, P.M.), pp. 920. Elsevier Academic Press.CrossRefGoogle Scholar
De Magalhães, J.P. 2015. The big, the bad and the ugly: extreme animals as inspiration for biomedical research. EMBO Rep. 16, 771776 (doi:10.15252/embr.201540606).CrossRefGoogle ScholarPubMed
Clutton-Brock, T., Sheldon, B.C. 2010. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562573 (doi:10.1016/j.tree.2010.08.002).CrossRefGoogle ScholarPubMed
Conde, D.A. et al. 2019. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. 116, 96589664 (doi:10.1073/pnas.1816367116).CrossRefGoogle ScholarPubMed
Holmes, D.J., Austad, S.N. 1995. The evolution of avian senescence patterns: implications for understanding primary aging processes. Am. Zool. 35, 307317 (doi:10.1093/icb/35.4.307).CrossRefGoogle Scholar
Ricklefs, R.E. 1998. Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 2444 (doi:10.1086/286147).CrossRefGoogle ScholarPubMed
Ricklefs, R.E. 2000. Intrinsic aging-related mortality in birds. J. Avian Biol. 31, 103111 (doi:10.1034/j.1600-048X.2000.210201.x).CrossRefGoogle Scholar
Ricklefs, R.E., Scheuerlein, A., Cohen, A. 2003. Age-related patterns of fertility in captive populations of birds and mammals. Exp. Gerontol. 38, 741745 (doi:10.1016/S0531-5565(03)00101-3).CrossRefGoogle ScholarPubMed
Comizzoli, P., Ottinger, M.A. 2021. Understanding reproductive aging in wildlife to improve animal conservation and human reproductive health. Front. Cell Dev. Biol. 9, 680471 (doi:10.3389/fcell.2021.680471).CrossRefGoogle ScholarPubMed
Finch, C.E., Austad, S.N. 2001. History and prospects: symposium on organisms with slow aging. Exp. Gerontol. 36, 593597 (doi:10.1016/S0531-5565(00)00228-X).CrossRefGoogle ScholarPubMed
Tidière, M., Gaillard, J.-M., Berger, V., Müller, D.W.H., Lackey, L.B., Gimenez, O., Clauss, M., Lemaître, J.-F. 2016. Comparative analyses of longevity and senescence reveal variable survival benefits of living in zoos across mammals. Sci. Rep. 6, 36361 (doi:10.1038/srep36361).CrossRefGoogle ScholarPubMed
Colchero, F. et al. 2021. The long lives of primates and the ‘invariant rate of ageing’ hypothesis. Nat. Commun. 12, 3666 (doi: 10.1038/s41467-021-23894-3).CrossRefGoogle Scholar
da Silva, R., Conde, D.A., Baudisch, A., Colchero, F. 2022. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science 376, 14661470 (doi:10.1126/science.abl7811).CrossRefGoogle ScholarPubMed
Williams, G.C. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398411 (doi:10.2307/2406060).CrossRefGoogle Scholar
Ricklefs, R.E., Cadena, C.D. 2007. Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity. Ecol. Lett. 10, 867875 (doi:10.1111/j.1461-0248.2007.01085.x).CrossRefGoogle ScholarPubMed
Tidière, M., Lemaître, J.-F., Douay, G., Whipple, M., Gaillard, J.-M. 2017. High reproductive effort is associated with decreasing mortality late in life in captive ruffed lemurs. Am. J. Primatol. 79, e22677 (doi:10.1002/ajp.22677).CrossRefGoogle ScholarPubMed
Landes, J., Henry, P.-Y., Hardy, I., Perret, M., Pavard, S. 2019. Female reproduction bears no survival cost in captivity for gray mouse lemurs. Ecol. Evol. 9, 61896198 (doi:10.1002/ece3.5124).CrossRefGoogle Scholar
Ricklefs, R.E. 2006. Embryo development and ageing in birds and mammals. Proc. R. Soc. Lond. B Biol. Sci. 273, 20772082 (doi:10.1098/rspb.2006.3544).Google ScholarPubMed
Tidière, M., Douay, G., Müller, P., Siberchicot, A., Sliwa, A., Whipple, M., Douhard, M. 2021. Lifespan decreases with proportion of sons in males but not females of zoo-housed tigers and lemurs. J. Evol. Biol. 34, 10611070 (doi:10.1111/jeb.13793).CrossRefGoogle Scholar
Lemaître, J.-F., Ronget, V., Gaillard, J.-M. 2020. Female reproductive senescence across mammals: a high diversity of patterns modulated by life history and mating traits. Mech. Ageing Dev. 192, 111377 (doi:10.1016/j.mad.2020.111377).CrossRefGoogle ScholarPubMed
Foote, A.D. 2008. Mortality rate acceleration and post-reproductive lifespan in matrilineal whale species. Biol. Lett. 4, 189191.CrossRefGoogle ScholarPubMed
Foster, E.A., Franks, D.W., Mazzi, S., Darden, S.K., Balcomb, K.C., Ford, J.K.B., Croft, D.P. 2012. Adaptive prolonged postreproductive life span in killer whales. Science 337, 13131313 (doi:10.1126/science.1224198).CrossRefGoogle ScholarPubMed
Photopoulou, T., Ferreira, I.M., Best, P.B., Kasuya, T., Marsh, H. 2017. Evidence for a postreproductive phase in female false killer whales Pseudorca crassidens. Front. Zool. 14, 30 (doi:10.1186/s12983-017-0208-y).CrossRefGoogle ScholarPubMed
Péron, G., Bonenfant, C., Lemaitre, J.-F., Ronget, V., Tidiere, M., Gaillard, J.-M. 2019. Does grandparental care select for a longer lifespan in non-human mammals? Biol. J. Linn. Soc. 128, 360372 (doi:10.1093/biolinnean/blz078).Google Scholar
Austad, S.N. 2006. Why women live longer than men: sex differences in longevity. Gend. Med. 3, 7992 (doi:10.1016/S1550-8579(06)80198-1).CrossRefGoogle ScholarPubMed
Trivers, R.I. 1972. Parental investment and sexual selection. In Sexual Selection and the Descent of Man, 1871–1971 (ed. Campbell, B.G.), pp. 136208. University of California Los Angeles, Aldine Publishing Company.Google Scholar
Andersson, M.B. 1994. Sexual Selection. Princeton University Press.CrossRefGoogle Scholar
Tidière, M., Gaillard, J.-M., Müller, D.W.H., Lackey, L.B., Gimenez, O., Clauss, M., Lemaître, J.-F. 2015. Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants. Evolution 69, 31233140 (doi:10.1111/evo.12801).CrossRefGoogle ScholarPubMed
Marais, G.A.B., Gaillard, J.-M., Vieira, C., Plotton, I., Sanlaville, D., Gueyffier, F., Lemaître, J.-F. 2018. Sex gap in aging and longevity: can sex chromosomes play a role? Biol. Sex Differ. 9, 33 (doi:10.1186/s13293-018-0181-y).CrossRefGoogle ScholarPubMed
Cayuela, H. et al. 2021. Sex-related differences in aging rate are associated with sex chromosome system in amphibians. Evolution 76, 346356 (doi:10.1111/evo.14410).CrossRefGoogle Scholar
Archer, C.R., Paniw, M., Vega-Trejo, R., Sepil, I. 2022. A sex skew in life-history research: the problem of missing males. Proc. R. Soc. B Biol. Sci. 289, 20221117 (doi:10.1098/rspb.2022.1117).CrossRefGoogle ScholarPubMed
Turbill, C., Bieber, C., Ruf, T. 2011. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B Biol. Sci. 278, 33553363 (doi:10.1098/rspb.2011.0190).CrossRefGoogle ScholarPubMed
Giroud, S., Zahn, S., Criscuolo, F., Chery, I., Blanc, S., Turbill, C., Ruf, T. 2014. Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes. Proc. R. Soc. B Biol. Sci. 281, 20141131 (doi:10.1098/rspb.2014.1131).CrossRefGoogle ScholarPubMed
Gaillard, J., Lemaître, J. 2020. An integrative view of senescence in nature. Funct. Ecol. 34, 416 (doi:10.1111/1365-2435.13506).CrossRefGoogle Scholar
Larson, S.M., Colchero, F., Jones, O.R., Williams, L., Fernandez-Duque, E. 2016. Age and sex-specific mortality of wild and captive populations of a monogamous pair-bonded primate (Aotus azarae). Am. J. Primatol. 78, 315325 (doi:10.1002/ajp.22408).CrossRefGoogle ScholarPubMed
Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philo. Trans. R. Soc. Lond. 115, 513583.Google Scholar
Makeham, W.M. 1866. On the principles to be observed in the construction of mortality tables. Assur. Mag. J. Inst. Actuar. 12, 305327 (doi:10.1017/S2046165800002823).CrossRefGoogle Scholar
Pinder III, J.E., Wiener, J.G., Smith, M.H. 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175179 (doi:10.2307/1936645).CrossRefGoogle Scholar
Siler, W. 1979. A competing-risk model for animal mortality. Ecology 60, 750757 (doi:10.2307/1936612).CrossRefGoogle Scholar
Colchero, F., Jones, O.R., Rebke, M. 2012. BaSTA: an R package for Bayesian estimation of age-specific survival from incomplete mark–recapture/recovery data with covariates. Methods Ecol. Evol. 3, 466470 (doi:10.1111/j.2041-210X.2012.00186.x).CrossRefGoogle Scholar
Moorad, J.A., Promislow, D.E.L., Flesness, N., Miller, R.A. 2012. A comparative assessment of univariate longevity measures using zoological animal records. Aging Cell 11, 940948 (doi:10.1111/j.1474-9726.2012.00861.x).CrossRefGoogle ScholarPubMed
Dugdale, H.L., Pope, L.C., Newman, C., Macdonald, D.W., Burke, T. 2011. Age-specific breeding success in a wild mammalian population: selection, constraint, restraint and senescence. Mol. Ecol. 20, 32613274 (doi:10.1111/j.1365-294X.2011.05167.x).CrossRefGoogle Scholar
Froy, H., Lewis, S., Nussey, D.H., Wood, A.G., Phillips, R.A. 2017. Contrasting drivers of reproductive ageing in albatrosses. J. Anim. Ecol. 86, 10221032 (doi:10.1111/1365-2656.12712).CrossRefGoogle ScholarPubMed
Muller, M.N. et al. 2020. Sexual dimorphism in chimpanzee (Pan troglodytes schweinfurthii) and human age-specific fertility. J. Hum. Evol. 144, 102795 (doi:10.1016/j.jhevol.2020.102795).CrossRefGoogle ScholarPubMed
Lockyear, K.M., Waddell, W.T., Goodrowe, K.L., MacDonald, S.E. 2009. Retrospective investigation of captive red wolf reproductive success in relation to age and inbreeding. Zoo Biol. 28, 214229 (doi:10.1002/zoo.20224).CrossRefGoogle ScholarPubMed
Russell, T. et al. 2018. MHC diversity and female age underpin reproductive success in an Australian icon; the Tasmanian devil. Sci. Rep. 8, 4175 (doi:10.1038/s41598-018-20934-9).CrossRefGoogle Scholar
Monaghan, P., Maklakov, A.A., Metcalfe, N.B. 2020. Intergenerational transfer of ageing: parental age and offspring lifespan. Trends Ecol. Evol. 35, 927937 (doi:10.1016/j.tree.2020.07.005).CrossRefGoogle ScholarPubMed
Ricklefs, R.E., Cadena, C.D. 2008. Heritability of longevity in captive populations of nondomesticated mammals and birds. J. Gerontol. A. Biol. Sci. Med. Sci. 63, 435446 (doi:10.1093/gerona/63.5.435).CrossRefGoogle ScholarPubMed
Karniski, C., Krzyszczyk, E., Mann, J. 2018. Senescence impacts reproduction and maternal investment in bottlenose dolphins. Proc. R. Soc. B Biol. Sci. 285, 20181123 (doi:10.1098/rspb.2018.1123).CrossRefGoogle ScholarPubMed
Kuesterl, A.P., Arnemann, J. 1992. Maternal rank affects reproductive success of male Barbary macaques (Macaca sylvanus): evidence from DNA fingerprinting. Behav. Ecol. Sociobiol. 30, 337341.CrossRefGoogle Scholar
Sartorelli, E.M.P., Mazzucatto, L.F., de Pina-Neto, J.M. 2001. Effect of paternal age on human sperm chromosomes. Fertil. Steril. 76, 11191123 (doi:10.1016/S0015-0282(01)02894-1).CrossRefGoogle ScholarPubMed
Huchard, E., Charpentier, M.J., Marshall, H., King, A.J., Knapp, L.A., Cowlishaw, G. 2012. Paternal effects on access to resources in a promiscuous primate society. Behav. Ecol. 24, 229236 (doi:10.1093/beheco/ars158).CrossRefGoogle Scholar
Kirkwood, T.B.L., Holliday, R. 1979. The evolution of ageing and longevity. Proc. R. Soc. B Biol. Sci. 205, 97112 (doi:10.1098/rspb.1979.0083).Google ScholarPubMed
Partridge, L. 2010. The new biology of ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 147154 (doi:10.1098/rstb.2009.0222).CrossRefGoogle ScholarPubMed
Vincze, O. et al. 2022. Cancer risk across mammals. Nature 601, 263267 (doi:10.1038/s41586-021-04224-5).CrossRefGoogle ScholarPubMed
Great Ape Heart Project. 2012. The Great Ape Heart Project: a collaboration to understand heart disease, reduce mortality and improve cardiac health in all four great ape taxa, White Paper, 116. https://greatapeheartproject.files.wordpress.com/2016/07/gahp_whitepaper2012.pdfGoogle Scholar
Johnson, A.E.W., Pollard, T.J., Mark, R., Berkowitz, S.J., Greenbaum, N.R., Lungren, M.P., Deng, C., Mark, R.G., Horng, S. 2019. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific Data, 6, 317 (doi:10.1038/s41597-019-0322-0).CrossRefGoogle ScholarPubMed
Crosier, A.E., Comizzoli, P., Baker, T., Davidson, A., Munson, L., Howard, J., Marker, L.L., Wildt, D.E. 2011. Increasing age influences uterine integrity, but not ovarian function or oocyte quality, in the cheetah (Acinonyx jubatus). Biol. Reprod. 85, 243253 (doi:10.1095/biolreprod.110.089417).CrossRefGoogle ScholarPubMed
Ludwig, C., Dehnhard, M., Pribbenow, S., Silinski-Mehr, S., Hofer, H., Wachter, B. 2019. Asymmetric reproductive aging in cheetah (Acinonyx jubatus) females in European zoos. J. Zoo Aquar. Res. 7, 8793.Google Scholar
McAloose, D. et al. 2020. From people to Panthera: natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. mBio 11, e0222020 (doi:10.1128/mBio.02220-20).CrossRefGoogle ScholarPubMed
Tidière, M., Badruna, A., Fouchet, D., Gaillard, J.-M., Lemaître, J.-F., Pontier, D. 2020. Pathogens shape sex differences in Mammalian aging. Trends Parasitol. 36, 668676 (doi:10.1016/j.pt.2020.05.004).CrossRefGoogle ScholarPubMed
Colchero, F. et al. 2016. The emergence of longevous populations. Proc. Natl. Acad. Sci. 113, E7681E7690 (doi:10.1073/pnas.1612191113).CrossRefGoogle ScholarPubMed
Aburto, J.M., Beltrán-Sánchez, H. 2019. Upsurge of homicides and its impact on life expectancy and life span inequality in Mexico, 2005–2015. Am. J. Public Health 109, 483489 (doi:10.2105/AJPH.2018.304878).CrossRefGoogle ScholarPubMed
Aburto, J.M., Villavicencio, F., Basellini, U., Kjærgaard, S., Vaupel, J.W. 2020. Dynamics of life expectancy and life span equality. Proc. Natl. Acad. Sci. 117, 52505259 (doi:10.1073/pnas.1915884117).CrossRefGoogle ScholarPubMed
Tidière, M. et al. 2023. Survival improvements of marine mammals in zoological institutions mirror historical advances in human longevity. Proc. Roy. Soc. B. 290, 20231895 (doi:10.1098/rspb.2023.1895).CrossRefGoogle Scholar
Urfer, S.R., Wang, M., Yang, M., Lund, E.M., Lefebvre, S.L. 2019. Risk factors associated with lifespan in pet dogs evaluated in primary care veterinary hospitals. J. Am. Anim. Hosp. Assoc. 55, 130137 (doi:10.5326/JAAHA-MS-6763).CrossRefGoogle ScholarPubMed
Wallis, L.J., Szabó, D., Erdélyi-Belle, B., Kubinyi, E. 2018. Demographic change across the lifespan of pet dogs and their Impact on health status. Front. Vet. Sci. 5, 200 (doi:10.3389/fvets.2018.00200).CrossRefGoogle ScholarPubMed
Kramer, A.F., Bherer, L., Colcombe, S.J., Dong, W., Greenough, W.T. 2004. Environmental influences on cognitive and brain plasticity during aging. J. Gerontol. A. Biol. Sci. Med. Sci. 59, M940M957 (doi:10.1093/gerona/59.9.M940).CrossRefGoogle ScholarPubMed
Zimmerman, E., Woolf, S.H. 2014. Understanding the relationship between education and health. NAM Perspect., 125 (doi:10.31478/201406a).Google Scholar
Szabó, D., Gee, N.R., Miklósi, Á. 2016. Natural or pathologic? Discrepancies in the study of behavioral and cognitive signs in aging family dogs. J. Vet. Behav. 11, 8698 (doi:10.1016/j.jveb.2015.08.003).CrossRefGoogle Scholar
Hoffman, J.M., Creevy, K.E., Franks, A., O’Neill, D.G., Promislow, D.E.L. 2018. The companion dog as a model for human aging and mortality. Aging Cell 17, e12737 (doi:10.1111/acel.12737).CrossRefGoogle Scholar
Klein, S.L., Poland, G.A. 2013. Personalized vaccinology: one size and dose might not fit both sexes. Vaccine 31, 25992600 (doi:10.1016/j.vaccine.2013.02.070).CrossRefGoogle Scholar
Morgan, K.N., Tromborg, C.T. 2007. Sources of stress in captivity. Appl. Anim. Behav. Sci. 102, 262302 (doi:10.1016/j.applanim.2006.05.032).CrossRefGoogle Scholar
Broom, D.M. 1991. Animal welfare: concepts and measurement. J. Anim. Sci. 69, 41674175 (doi:10.2527/1991.69104167x).CrossRefGoogle ScholarPubMed
Walker, M., Duggan, G., Roulston, N., Van Slack, A., Mason, G. 2012. Negative affective states and their effects on morbidity, mortality and longevity. Anim. Welf. 21, 497509 (doi:10.7120/09627286.21.4.497).CrossRefGoogle Scholar
World Health Organization. 2016. World health statistics 2016: monitoring health for the SDGs, sustainable development goals. www.who.int/docs/default-source/gho-documents/world-health-statistic-reports/world-heatlth-statistics-2016.pdfGoogle Scholar
Robeck, T.R. et al. 2021. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun. Biol. 4, 642 (doi:10.1038/s42003-021-02179-x).CrossRefGoogle ScholarPubMed
Robert, A., Chantepie, S., Pavard, S., Sarrazin, F., Teplitsky, C. 2015. Actuarial senescence can increase the risk of extinction of mammal populations. Ecol. Appl. 25, 116124 (doi:10.1890/14-0221.1).CrossRefGoogle ScholarPubMed
Schipper, J. et al. 2008. The status of the worlds land and marine mammals: diversity, threat, and knowledge. Science 322, 225230 (doi:10.1126/science.1165115).CrossRefGoogle ScholarPubMed
Reynolds, J.D. 2003. Life histories and extinction risk. In Macroecology: Concepts and Consequences (eds Blackburn, T.M., Gaston, K.J.), pp. 195217. Blackwell Publishing.Google Scholar
Rhodin, A.G.J. et al. 2018. Global conservation status of turtles and tortoises (order Testudines). Chelonian Conserv. Biol. 17, 135161 (doi:10.2744/CCB-1348.1).CrossRefGoogle Scholar
Tribe, A., Booth, R. 2003. Assessing the role of zoos in wildlife conservation. Hum. Dimens. Wildlife 8, 6574 (doi:10.1080/10871200390180163).CrossRefGoogle Scholar
Fa, J.E., Funk, S.M., O’Connell, D. 2011. Zoo Conservation Biology. Cambridge University Press.CrossRefGoogle Scholar
Grow, S., Lyles, A.M., Greenberg, R., Powell, D.M., Dorsey, C. 2024. Zoos, aquariums, and zoological parks. In Encyclopedia of Biodiversity (third edition) (ed. Scheiner, S.M.), pp. 474484. Academic Press (doi:10.1016/B978-0-12-822562-2.00036-0).CrossRefGoogle Scholar
Gusset, M., Dick, G. 2011. The global reach of zoos and aquariums in visitor numbers and conservation expenditures. Zoo Biol. 30, 566569 (doi:10.1002/zoo.20369).CrossRefGoogle ScholarPubMed
Fa, J.E., Gusset, M., Flesness, N., Conde, D.A. 2014. Zoos have yet to unveil their full conservation potential. Anim. Conserv. 17, 97100 (doi:10.1111/acv.12115).CrossRefGoogle Scholar
Association of Zoos and Aquariums. 2022. Accreditation. www.aza.org/becoming-accredited.Google Scholar
Zimmermann, A. 2010. The role of zoos in contributing to in situ conservation. In Wild Mammals in Captivity: Principles and Techniques for Zoo Management (eds Kleiman, D.G., Thompson, K.V., Kirk Baer, C.), pp. 280287. University of Chicago Press.Google Scholar
Tokarska, M., Pertoldi, C., Kowalczyk, R., Perzanowski, K. 2011. Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery: European bison conservation genetics. Mammal Rev. 41, 151162 (doi:10.1111/j.1365-2907.2010.00178.x).CrossRefGoogle Scholar
Princée, F.P.G., ed. 2016. Exploring Studbooks for Wildlife Management and Conservation. Springer.CrossRefGoogle Scholar
Seal, U.S., Makey, D.G., Murtfeldt, L.E. 1976. ISIS: an animal census system. Int. Zoo Yearb. 16, 180184 (doi:10.1111/j.1748-1090.1976.tb00171.x).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×