Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:44:23.089Z Has data issue: false hasContentIssue false

Chapter 22 - Sleep and Autoimmunity

from Section 4 - Autoimmunity in Neurological and Psychiatric Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

This chapter focuses on several types of sleep disorders in patients with autoimmune encephalitis, including narcolepsy, REM sleep behaviour disorder (RBD), NREM sleep parasomnias, and central and obstructive sleep apnoeas. Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness and severe and irresistible episodes of daytime sleep. Narcolepsy is caused by a T cell-mediated destruction of hypocretin-synthetizing neurons located in the hypothalamus. Patients with anti-NMDAR encephalitis develop severe insomnia at disease onset, and many of them have hypersomnia after the acute stage of the disease or during clinical recovery. Patients with anti-LGI1 encephalitis frequently develop REM sleep behaviour disorder. Patients with Morvan syndrome and CASPR2 antibodies present a sleep disorder called agrypnia excitata that consists of severe insomnia, motor and sympathetic hyperactivity, quasi-purposeful movements, and enacted dreams in the setting of loss of slow-wave sleep and circadian rhythmicity. Sleep alterations occur in >80% of patients with anti-IgLON5 disease; the most characteristic are sleep apnoeas and non-REM and REM parasomnias. Symptoms of excessive daytime sleepiness, sometimes with findings suggestive of narcolepsy, were reported in about 30% of patients with paraneoplastic anti-Ma2 encephalitis, and less frequently in patients with neuromyelitis optica spectrum disorders associated with aquaporin 4 antibodies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mignot, E. Why we sleep: the temporal organization of recovery. PLoS Biol 2008;6:e106.Google Scholar
DiNuzzo, M, Nedergaard, M. Brain energetics during the sleep-wake cycle. Curr Opin Neurobiol 2017;47:6572.Google Scholar
Besedovsky, L, Lange, T, Haack, M. The sleep-immune crosstalk in health and disease. Physiol Rev 2019;99:13251380.Google Scholar
Scammell, TE, Arrigoni, E, Lipton, JO. Neural circuitry of wakefulness and sleep. Neuron 2017;93:747765.CrossRefGoogle ScholarPubMed
Adamantidis, AR, Gutierrez Herrera, C, Gent, TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019;20:746762.Google Scholar
Imeri, L, Opp, MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci 2009;10:199210.CrossRefGoogle ScholarPubMed
Lange, T, Perras, B, Fehm, HL, Born, J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med 2003;65:831835.CrossRefGoogle ScholarPubMed
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13:575586.CrossRefGoogle ScholarPubMed
Gaig, C, Iranzo, A, Cajochen, C, et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019;42:zsz133.CrossRefGoogle ScholarPubMed
Mahowald, MW, Schenck, CH. Status dissociatus: a perspective on states of being. Sleep 1991;14:6979.CrossRefGoogle Scholar
Guaraldi, P, Calandra-Buonaura, G, Terlizzi, R, et al. Oneiric stupor: the peculiar behaviour of agrypnia excitata. Sleep Med 2011;12(Suppl. 2):S6467.CrossRefGoogle ScholarPubMed
Lugaresi, E, Provini, F. Agrypnia excitata: clinical features and pathophysiological implications. Sleep Med Rev 2001;5:313322.CrossRefGoogle ScholarPubMed
Iranzo, A, Graus, F, Clover, L, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 2006;59:178181.Google Scholar
Compta, Y, Iranzo, A, Santamaria, J, Casamitjana, R, Graus, F. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis. Sleep 2007;30:767769.CrossRefGoogle ScholarPubMed
Vitiello, M, Antelmi, E, Pizza, F, et al. Type 1 narcolepsy in anti-Hu antibodies mediated encephalitis: a case report. Sleep Med 2018;52:2325.Google Scholar
Dauvilliers, Y, Arnulf, I, Mignot, E. Narcolepsy with cataplexy. Lancet 2007;369:499511.Google Scholar
Bassetti, CLA, Adamantidis, A, Burdakov, D, et al. Narcolepsy: clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 2019;15:519539.Google Scholar
Sateia, MJ. International classification of sleep disorders – third edition: highlights and modifications. Chest 2014;146:13871394.CrossRefGoogle ScholarPubMed
Ohayon, MM, Priest, RG, Zulley, J, Smirne, S, Paiva, T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 2002;58:18261833.CrossRefGoogle ScholarPubMed
Silber, MH, Krahn, LE, Olson, EJ, Pankratz, VS. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 2002;25:197202.Google Scholar
Kornum, BR. Narcolepsy type 1: What have we learned from immunology? Sleep 2020;43:zsaa055.CrossRefGoogle ScholarPubMed
Kornum, BR, Jennum, P. The case for narcolepsy as an autoimmune disease. Exp Rev Clin Immunol 2020;16:231233.Google Scholar
Mahoney, CE, Cogswell, A, Koralnik, IJ, Scammell, TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:8393.CrossRefGoogle ScholarPubMed
Tafti, M, Hor, H, Dauvilliers, Y, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 2014;37:1925.Google Scholar
Sollid, LM, Pos, W, Wucherpfennig, KW. Molecular mechanisms for contribution of MHC molecules to autoimmune diseases. Curr Opin Immunol 2014;31:2430.Google Scholar
Tafti, M, Lammers, GJ, Dauvilliers, Y, et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep 2016;39:581587.CrossRefGoogle Scholar
Luo, G, Ambati, A, Lin, L, et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc Natl Acad Sci USA 2018;115:E12323e12332.Google Scholar
Latorre, D, Kallweit, U, Armentani, E, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 2018;562:6368.Google Scholar
Pedersen, NW, Holm, A, Kristensen, NP, et al. CD8(+) T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat Commun 2019;10:837.CrossRefGoogle ScholarPubMed
Bernard-Valnet, R, Yshii, L, Queriault, C, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci USA 2016;113:1095610961.Google Scholar
Lind, A, Eriksson, D, Akel, O, et al. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand J Immunol 2020;91:e12864.CrossRefGoogle ScholarPubMed
Wallenius, M, Lind, A, Akel, O, et al. Autoantibodies in Pandemrix®-induced narcolepsy: nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity 2019;52:185191.Google Scholar
Bergman, P, Adori, C, Vas, S, et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci USA 2014;111:E37353744.Google Scholar
Kawashima, M, Lin, L, Tanaka, S, et al. Anti-Tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep 2010;33:869874.Google Scholar
Tanaka, S, Honda, Y, Honda, M, et al. Anti-Tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/orexin neuronal functions. Sleep 2017;40(1).Google Scholar
Hara, J, Beuckmann, CT, Nambu, T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001;30:345354.Google Scholar
Lim, AS, Scammell, TE. The trouble with Tribbles: do antibodies against TRIB2 cause narcolepsy? Sleep 2010;33:857858.Google Scholar
Ray, K. Sleep: narcolepsy – a role for TRIB2 autoantibodies? Nat Rev Neurol 2010;6:238.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Joubert, B, Kerschen, P, Zekeridou, A, et al. Clinical spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 2015;72:11631169.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAa receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
McKay, JH, Dimberg, EL, Lopez Chiriboga, AS. A systematic review of gamma-aminobutyric acid receptor type b autoimmunity. Neurologia i neurochirurgia polska 2019;53:17.Google Scholar
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.Google Scholar
Blattner, MS, de Bruin, GS, Bucelli, RC, Day, GS. Sleep disturbances are common in patients with autoimmune encephalitis. J Neurol 2019;266:10071015.Google Scholar
Cairney, SA, Ashton, JE, Roshchupkina, AA, Sobczak, JM. A dual role for sleep spindles in sleep-dependent memory consolidation? J Neurosci 2015;35:1232812330.CrossRefGoogle ScholarPubMed
Sola-Valls, N, Arino, H, Escudero, D, et al. Telemedicine assessment of long-term cognitive and functional status in anti-leucine-rich, glioma-inactivated 1 encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e652.CrossRefGoogle ScholarPubMed
Barnes, DC, Wilson, DA. Slow-wave sleep-imposed replay modulates both strength and precision of memory. J Neurosci 2014;34:51345142.CrossRefGoogle ScholarPubMed
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.CrossRefGoogle ScholarPubMed
Bost, C, Chanson, E, Picard, G, et al. Malignant tumors in autoimmune encephalitis with anti-NMDA receptor antibodies. J Neurol 2018;265:21902200.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology 2013;81:10581063.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Muñoz-Lopetegi, A, Graus, F, Dalmau, J, Santamaria, J. Sleep disorders in antibody associated diseases of the central nervous system. Lancet Neurol 2020;19:10101022.Google Scholar
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Irani, SR, Bera, K, Waters, P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:16551667.Google Scholar
Al-Diwani, A, Handel, A, Townsend, L, et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 2019;6:235246CrossRefGoogle ScholarPubMed
Ariño, H, Muñoz-Lopetegi, A, Martinez-Hernandez, E, et al. Sleep disorders in anti-NMDAR encephalitis. Neurology 2020;95:e671e684.CrossRefGoogle ScholarPubMed
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:14491456.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.CrossRefGoogle ScholarPubMed
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65:13411346.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Celicanin, M, Blaabjerg, M, Maersk-Moller, C, et al. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies: a national cohort study. Eur J Neurol 2017;24:9991005.Google Scholar
Cornelius, JR, Pittock, SJ, McKeon, A, et al. Sleep manifestations of voltage-gated potassium channel complex autoimmunity. Arch Neurol 2011;68:733738.Google Scholar
Maquet, P, Peters, J, Aerts, J, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996;383:163166.Google Scholar
Petit-Pedrol, M, Sell, J, Planaguma, J, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 2018;141:31443159.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Abou-Zeid, E, Boursoulian, LJ, Metzer, WS, Gundogdu, B. Morvan syndrome: a case report and review of the literature. J Clin Neuromuscul Dis 2012;13:214227.Google Scholar
Montagna, P, Lugaresi, E. Agrypnia excitata: a generalized overactivity syndrome and a useful concept in the neurophysiopathology of sleep. Clin Neurophysiol 2002;113:552560.Google Scholar
Calandra-Buonaura, G, Provini, F, Guaraldi, P, et al. Oculomasticatory myorhythmia and agrypnia excitata guide the diagnosis of Whipple disease. Sleep Med 2013;14:14281430.Google Scholar
Provini, F, Marconi, S, Amadori, M, et al. Morvan chorea and agrypnia excitata: when video-polysomnographic recording guides the diagnosis. Sleep Med 2011;12:10411043.Google Scholar
van Sonderen, A, Arino, H, Petit-Pedrol, M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521528.Google Scholar
Joubert, B, Saint-Martin, M, Noraz, N, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:11151124.Google Scholar
Lugaresi, E, Provini, F, Cortelli, P. Agrypnia excitata. Sleep Med 2011;12(Suppl. 2):S310.Google Scholar
Lanuzza, B, Arico, D, Cosentino, FI, Provini, F, Ferri, R. Video-polysomnographic study of a patient with Morvan’s fibrillary chorea. Sleep Med 2012;13:550553.CrossRefGoogle ScholarPubMed
Baiardi, S, Provini, F, Avoni, P, Pasquinelli, M, Liguori, R. Immunotherapy of oneiric stupor in Morvan syndrome: efficacy documented by actigraphy. Neurology 2015;84:24572459.Google Scholar
Liguori, R, Vincent, A, Clover, L, et al. Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001;124:24172426.Google Scholar
Fischer-Perroudon, C, Trillet, M, Mouret, J, et al. [Polygraphic and metabolic studies of persistent insomnia with hallucinations. Apropos of an antomo-clinical study of a case of Morvan’s fibrillar chorea]. Rev Neurol (Paris) 1974;130:111125.Google Scholar
Baldelli, L, Provini, F. Fatal familial insomnia and agrypnia excitata: autonomic dysfunctions and pathophysiological implications. Autonom Neurosci 2019;218:6886.Google Scholar
Aldrich, MS, Naylor, MW. Narcolepsy associated with lesions of the diencephalon. Neurology 1989;39:15051508.CrossRefGoogle ScholarPubMed
Bassetti, C, Mathis, J, Gugger, M, Lovblad, KO, Hess, CW. Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol 1996;39:471480.CrossRefGoogle ScholarPubMed
Mogk, S, Bosselmann, CM, Mudogo, CN, et al. African trypanosomes and brain infection: the unsolved question. Biol Rev Cambridge Philos Soc 2017;92:16751687.Google Scholar
Montagna, P. Fatal familial insomnia: a model disease in sleep physiopathology. Sleep Med Rev 2005;9:339353.Google Scholar
Gama, RL, Tavora, DG, Bomfim, RC, et al. Sleep disturbances and brain MRI morphometry in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy: a comparative study. Parkinsonism Relat Disord 2010;16:275279.Google Scholar
Iranzo, A. Sleep and neurological autoimmune diseases. Neuropsychopharmacology 2020;45:129140.CrossRefGoogle ScholarPubMed
Silber, MH. Autoimmune sleep disorders. Handb Clin Neurol 2016;133:317326.CrossRefGoogle ScholarPubMed
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Ortega Suero, G, Sola-Valls, N, Escudero, D, Saiz, A, Graus, F. Anti-Ma and anti-Ma2-associated paraneoplastic neurological syndromes. Neurologia 2018;33:1827.Google Scholar
Rosenfeld, MR, Eichen, JG, Wade, DF, Posner, JB, Dalmau, J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol 2001;50:339348.CrossRefGoogle ScholarPubMed
Hoffmann, LA, Jarius, S, Pellkofer, HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767773.Google Scholar
Landolfi, JC, Nadkarni, M. Paraneoplastic limbic encephalitis and possible narcolepsy in a patient with testicular cancer: case study. Neuro-oncol 2003;5:214216.Google Scholar
Sahashi, K, Sakai, K, Mano, K, Hirose, G. Anti-Ma2 antibody related paraneoplastic limbic/brain stem encephalitis associated with breast cancer expressing Ma1, Ma2, and Ma3 mRNAs. J Neurol Neurosurg Psychiatry 2003;74:13321335.Google Scholar
Adams, C, McKeon, A, Silber, MH, Kumar, R. Narcolepsy, REM sleep behavior disorder, and supranuclear gaze palsy associated with Ma1 and Ma2 antibodies and tonsillar carcinoma. Arch Neurol 2011;68:521524.Google Scholar
Blumenthal, DT, Salzman, KL, Digre, KB, et al. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology 2006;67:146149.CrossRefGoogle ScholarPubMed
Suwijn, SR, Klieverik, LP, Odekerken, VJJ. Anti-Ma2-associated encephalitis in a patient with testis carcinoma. Neurology 2016;86:1461.Google Scholar
Bergner, CG, Lang, C, Spreer, A, et al. Teaching NeuroImages: Ma2 encephalitis presenting as acute panhypopituitarism in a young man. Neurology 2013;81:e146e147.Google Scholar
Peters, J, Vijiaratnam, N, Lo, KY, Evans, AH. Anti-Ma2-associated paraneoplastic encephalitis eat, sleep and repeat. Intern Med J 2019;49:931932.Google Scholar
Dauvilliers, Y, Bauer, J, Rigau, V, et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy–cataplexy. JAMA Neurol 2013;70:13051310.Google Scholar
Rojas-Marcos, I, Graus, F, Sanz, G, Robledo, A, Diaz-Espejo, C. Hypersomnia as presenting symptom of anti-Ma2-associated encephalitis: case study. Neuro-oncol 2007;9:7577.Google Scholar
English, SW, Keegan, BM, Flanagan, EP, Tobin, WO, Zalewski, NL. Clinical reasoning: a 30-year-old man with headache and sleep disturbance. Neurology 2018;90:e1535e1540.Google Scholar
Overeem, S, Dalmau, J, Bataller, L, et al. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology 2004;62:138140.Google Scholar
Kritikou, I, Vgontzas, AN, Rapp, MA, Bixler, EO. Anti-Ma1- and anti-Ma2-associated encephalitis manifesting with rapid eye movement sleep disorder and narcolepsy with cataplexy: a case report. Biol Psychiatry 2018;83:e39e40.Google Scholar
Antelmi, E, Pizza, F, Franceschini, C, Ferri, R, Plazzi, G. REM sleep behavior disorder in narcolepsy: a secondary form or an intrinsic feature? Sleep Med Rev 2020;50:101254.Google Scholar
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.Google Scholar
Honorat, JA, Komorowski, L, Josephs, KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol Neuroimmunol Neuroinflamm 2017;4:e385.CrossRefGoogle ScholarPubMed
Heidbreder, A, Philipp, K. Anti-IgLON 5 disease. Curr Treat Options Neurol 2018;20:29.Google Scholar
Gelpi, E, Hoftberger, R, Graus, F, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 2016;132:531543.Google Scholar
Gaig, C, Ercilla, G, Daura, X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019;6:e605.CrossRefGoogle ScholarPubMed
Erro, ME, Sabater, L, Martinez, L, et al. Anti-IGLON5 disease: a new case without neuropathologic evidence of brainstem tauopathy. Neurol Neuroimmunol Neuroinflamm 2020;7:e651.Google Scholar
Cagnin, A, Mariotto, S, Fiorini, M, et al. Microglial and neuronal TDP-43 pathology in anti-IgLON5-related tauopathy. J Alzheimer Dis 2017;59:1320.Google Scholar
Sabater, L, Planaguma, J, Dalmau, J, Graus, F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflammation 2016;13:226.Google Scholar
Nissen, MS, Blaabjerg, M. Anti-IgLON5 disease: a case with 11-year clinical course and review of the literature. Front Neurol 2019;10:1056.Google Scholar
Gaig, C, Compta, Y. Neurological profiles beyond the sleep disorder in patients with anti-IgLON5 disease. Curr Opin Neurol 2019;32:493499.Google Scholar
Gaig, C, Iranzo, A, Santamaria, J, Graus, F. The sleep disorder in anti-lgLON5 disease. Curr Neurol Neurosci Rep 2018;18:41.Google Scholar
Anaclet, C, Fuller, PM. Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 2017;44:139143.Google Scholar
Brunetti, V, Della Marca, G, Spagni, G, Iorio, R. Immunotherapy improves sleep and cognitive impairment in anti-IgLON5 encephalopathy. Neurol Neuroimmunol Neuroinflamm 2019;6:e577.Google Scholar
Schroder, JB, Melzer, N, Ruck, T, et al. Isolated dysphagia as initial sign of anti-IgLON5 syndrome. Neurol Neuroimmunol Neuroinflamm 2017;4:e302.Google Scholar
Moreno-Estebanez, A, Garcia-Ormaechea, M, Tijero, B, et al. Anti-IgLON5 disease responsive to immunotherapy: a case report with an abnormal MRI. Mov Disord Clin Pract 2018;5:653656.CrossRefGoogle ScholarPubMed
Haitao, R, Yingmai, Y, Yan, H, et al. Chorea and parkinsonism associated with autoantibodies to IgLON5 and responsive to immunotherapy. J Neuroimmunol 2016;300:910.Google Scholar
Morales-Briceno, H, Cruse, B, Fois, AF, et al. IgLON5-mediated neurodegeneration is a differential diagnosis of CNS Whipple disease. Neurology 2018;90:11131115.Google Scholar
Hoffman, LA, Vilensky, JA. Encephalitis lethargica: 100 years after the epidemic. Brain 2017;140:22462251.Google Scholar
Vilensky, JAGS, Duvoisin, RC, Mukhamedzyanov, RZ. Post-epidemic period encephalitis lethargica. Encephalitis Lethargica 2011;5:83139.Google Scholar
Howard, RS, Lees, AJ. Encephalitis lethargica. A report of four recent cases. Brain 1987;110(Pt 1):1933.Google Scholar
Rail, D, Scholtz, C, Swash, M. Post-encephalitic Parkinsonism: current experience. J Neurol Neurosurg Psychiatry 1981;44:670676.Google Scholar
Brunetti, V, Testani, E, Iorio, R, et al. Post-encephalitic parkinsonism and sleep disorder responsive to immunological treatment: a case report. Clin EEG Neurosci 2016;47:324329.CrossRefGoogle ScholarPubMed
Ward, CD. On doing nothing: descriptions of sleep, fatigue, and motivation in encephalitis lethargica. Mov Disord 2011;26:599604.Google Scholar
Anderson, LL, Vilensky, JA, Duvoisin, RC. Review: neuropathology of acute phase encephalitis lethargica: a review of cases from the epidemic period. Neuropathol Appl Neurobiol 2009;35:462472.Google Scholar
Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177189.Google Scholar
Kanbayashi, T, Shimohata, T, Nakashima, I, et al. Symptomatic narcolepsy in patients with neuromyelitis optica and multiple sclerosis: new neurochemical and immunological implications. Arch Neurol 2009;66:15631566.Google Scholar
Nozaki, H, Shimohata, T, Kanbayashi, T, et al. A patient with anti-aquaporin 4 antibody who presented with recurrent hypersomnia, reduced orexin (hypocretin) level, and symmetrical hypothalamic lesions. Sleep Med 2009;10:253255.Google Scholar
Baba, T, Nakashima, I, Kanbayashi, T, et al. Narcolepsy as an initial manifestation of neuromyelitis optica with anti-aquaporin-4 antibody. J Neurol 2009;256:287288.Google Scholar
Kume, K, Deguchi, K, Ikeda, K, et al. Neuromyelitis optica spectrum disorder presenting with repeated hypersomnia due to involvement of the hypothalamus and hypothalamus–amygdala linkage. Mult Scler 2015;21:960962.Google Scholar
Sekiguchi, T, Ishibashi, S, Kubodera, T, et al. Anhidrosis associated with hypothalamic lesions related to anti-aquaporin 4 autoantibody. J Neurol 2011;258:22932295.CrossRefGoogle ScholarPubMed
Deguchi, K, Kono, S, Deguchi, S, et al. A patient with anti-aquaporin 4 antibody presenting hypersomnolence as the initial symptom and symmetrical hypothalamic lesions. J Neurol Sci 2012;312:1820.CrossRefGoogle ScholarPubMed
Suzuki, K, Nakamura, T, Hashimoto, K, et al. Hypothermia, hypotension, hypersomnia, and obesity associated with hypothalamic lesions in a patient positive for the anti-aquaporin 4 antibody: a case report and literature review. Arch Neurol 2012;69:13551359.Google Scholar
Inoue, K, Nakayama, T, Kamisawa, A, Saito, J. Syndrome of inappropriate antidiuretic hormone accompanied by bilateral hypothalamic and anterior thalamic lesions with serum antiaquaporin 4 antibody. BMJ Case Rep 2017;2017:bcr2017219721.Google Scholar
Poppe, AY, Lapierre, Y, Melancon, D, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler 2005;11:617621.Google Scholar
Viegas, S, Weir, A, Esiri, M, et al. Symptomatic, radiological and pathological involvement of the hypothalamus in neuromyelitis optica. J Neurol Neurosurg Psychiatry 2009;80:679682.Google Scholar
Beigneux, Y, Arnulf, I, Guillaume-Jugnot, P, et al. Secondary hypersomnia as an initial manifestation of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019;38:101869.Google Scholar
Tanaka, S, Kanbayashi, T, Sonoo, M. Neuromyelitis optica spectrum disorder with severe orthostatic hypotension due to hypothalamic lesions. Mult Scler Relat Disord 2020;40:101977.Google Scholar
Thalhofer, S, Dorow, P. Central sleep apnea. Respiration Intl Rev Thorac Dis 1997;64:29.Google Scholar
Ball, JA, Warner, T, Reid, P, et al. Central alveolar hypoventilation associated with paraneoplastic brain-stem encephalitis and anti-Hu antibodies. J Neurol 1994;241:561566.Google Scholar
Lee, KS, Higgins, MJ, Patel, BM, Larson, JS, Rady, MY. Paraneoplastic coma and acquired central alveolar hypoventilation as a manifestation of brainstem encephalitis in a patient with ANNA-1 antibody and small-cell lung cancer. Neurocritical care 2006;4:137139.Google Scholar
Najjar, M, Taylor, A, Agrawal, S, et al. Anti-Hu paraneoplastic brainstem encephalitis caused by a pancreatic neuroendocrine tumor presenting with central hypoventilation. J Clin Neurosci 2017;40:7273.Google Scholar
Saiz, A, Bruna, J, Stourac, P, et al. Anti-Hu-associated brainstem encephalitis. J Neurol Neurosurg Psychiatry 2009;80:404407.Google Scholar
Shosha, E, Dubey, D, Palace, J, et al. Area postrema syndrome: frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 2018;91:e1642e1651.Google Scholar
Jarius, S, Kleiter, I, Ruprecht, K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016;13:281.Google Scholar
Vitaliani, R, Mason, W, Ances, B, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 2005;58:594604.Google Scholar
Balu, R, McCracken, L, Lancaster, E, et al. A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology 2019;92:e244e252.Google Scholar
Ize-Ludlow, D, Gray, JA, Sperling, MA, et al. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation presenting in childhood. Pediatrics 2007;120:e179e188.Google Scholar
Bougneres, P, Pantalone, L, Linglart, A, Rothenbuhler, A, Le Stunff, C. Endocrine manifestations of the rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neural tumor syndrome in childhood. J Clin Endocrinol Metab 2008;93:39713980.Google Scholar
Harvengt, J, Gernay, C, Mastouri, M, et al. ROHHAD(NET) syndrome: systematic review of the clinical timeline and recommendations for diagnosis and prognosis. J Clin Endocrinol Metab 2020;105:dgaa247.Google Scholar
Lee, JM, Shin, J, Kim, S, et al. Rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neuroendocrine tumors (ROHHADNET) syndrome: a systematic review. Biomed Res Int 2018;2018:1250721.Google Scholar
Nunn, K, Ouvrier, R, Sprague, T, Arbuckle, S, Docker, M. Idiopathic hypothalamic dysfunction: a paraneoplastic syndrome? J Child Neurol 1997;12:276281.Google Scholar
Sethi, K, Lee, YH, Daugherty, LE, et al. ROHHADNET syndrome presenting as major behavioral changes in a 5-year-old obese girl. Pediatrics 2014;134:e586e589.Google Scholar
Giacomozzi, C, Guaraldi, F, Cambiaso, P, et al. Anti-hypothalamus and anti-pituitary auto-antibodies in ROHHAD syndrome: additional evidence supporting an autoimmune etiopathogenesis. Horm Res Paediatr 2019;92:124132.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Sleep and Autoimmunity
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Sleep and Autoimmunity
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Sleep and Autoimmunity
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.023
Available formats
×