The world around us, natural or man-made, is built and held together by solid materials. Understanding their behaviour is the task of solid mechanics, which is in turn applied to many areas, from earthquake mechanics to industry, construction to biomechanics. The variety of materials (metals, rocks, glasses, sand, flesh and bone) and their properties (porosity, viscosity, elasticity, plasticity) is reflected by the concepts and techniques needed to understand them: a rich mixture of mathematics, physics and experiment. These are all combined in this unique book, based on years of experience in research and teaching. Starting from the simplest situations, models of increasing sophistication are derived and applied. The emphasis is on problem-solving and building intuition, rather than a technical presentation of theory. The text is complemented by over 100 carefully-chosen exercises, making this an ideal companion for students taking advanced courses, or those undertaking research in this or related disciplines.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.