Skip to main content Accessibility help
×
    Show more authors
  • You may already have access via personal or institutional login
  • Select format
  • Publisher:
    Cambridge University Press
    Publication date:
    July 2022
    August 2022
    ISBN:
    9781009004138
    9781316518953
    9781009001922
    Dimensions:
    (235 x 157 mm)
    Weight & Pages:
    0.49kg, 242 Pages
    Dimensions:
    (228 x 151 mm)
    Weight & Pages:
    0.36kg, 242 Pages
You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.

    Reviews

    ‘In Algebraic Number Theory for Beginners, John Stillwell once again displays his remarkable talent for using the history of mathematics to motivate and explore even the most abstract mathematical concepts at an accessible, undergraduate level. This book is another gem of the genre Stillwell has done so much to enhance.’

    Karen Hunger Parshall - University of Virginia

    ‘Stillwell, more than any author I know, helps us understand mathematics from its roots. In this book, he leads us into algebraic number theory along a historical route from concrete to abstract. In doing so, Stillwell makes a strong pedagogical case for flipping a typical algebraic number theory course — that students will understand number theory better if questions about numbers come before and throughout the abstract theory of rings and ideals. The treatments of mathematics and its history are crystal clear and meticulous. Stillwell’s text is particularly well-suited for an advanced undergraduate or early graduate-level course in number theory. Experts also will find this text to be an incredible resource for its historical approach and well-motivated exercises. Stillwell has written another gem, this time for readers interested in number theory, abstract algebra, and their intertwined history.’

    Martin Weissman - University of California, Santa Cruz

    'This book is sure to be welcomed by advanced students and their instructors … A helpful index and an extensive list of references conclude the text … Highly recommended.'

    J. Johnson Source: Choice

    ‘It goes without saying that the exposition is as clear as possible. There are a few exercises in each section, historical comments, a decent bibliography and an index.’

    Franz Lemmermeyer Source: zbMATH Open

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.