Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T20:01:25.278Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 July 2022

Pierre Gaspard
Affiliation:
Université Libre de Bruxelles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., and Stegun, I. A. (eds). 1972. Handbook of Mathematical Functions. New York: Dover.Google Scholar
Agarwalla, B. K., Li, B., and Wang, J.-S. 2012. Full-counting statistics of heat transport in harmonic junctions: Transient, steady states, and fluctuation theorems. Phys. Rev. E, 85, 051142.CrossRefGoogle ScholarPubMed
Akhiezer, A. I., and Peletminskii, S. V. 1981. Methods of Statistical Physics. 1st ed. Oxford: Pergamon Press. Translated by Schukin, M..Google Scholar
Albano, A. M., Bedeaux, D., and Mazur, P. 1975. On the motion of a sphere with arbitrary slip in a viscous incompressible fluid. Physica A, 80, 8997.Google Scholar
Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 1998. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. 1st ed. New York: Garland Science.Google Scholar
Alder, B. J., and Wainwright, T. E. 1970. Decay of the velocity autocorrelation function. Phys. Rev. A, 1, 1821.Google Scholar
Alder, B. J., Gass, D. M., and Wainwright, T. E. 1970. Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys., 53, 38133826.Google Scholar
Allen, M. P., and Tildesley, D. J. 2017. Computer Simulation of Liquids. 2nd ed. Oxford: Oxford University Press.Google Scholar
Ambegaokar, V., and Halperin, B. I. 1969. Voltage due to thermal noise in the dc Josephson effect. Phys. Rev. Lett., 22, 13641366.Google Scholar
Amman, M., Wilkins, R., Ben-Jacob, E., Maker, P. D., and Jaklevic, R. C. 1991. Analytic solution for the current-voltage characteristic of two mesoscopic tunnel junctions coupled in series. Phys. Rev. B, 43, 11461149.CrossRefGoogle ScholarPubMed
Anderson, J. L. 1989. Colloid transport by interfacial forces. Ann. Rev. Fluid Mech., 21, 6199.Google Scholar
Anderson, P. W. 1984. Basic Notions of Condensed Matter Physics. Menlo Park CA: Benjamin/Cummings.Google Scholar
Andrieux, D. 2009. Nonequilibrium Statistical Thermodynamics at the Nanoscale: From Maxwell Demon to Biological Information Processing. Saarbrücken: VDM Verlag. PhD thesis, Université libre de Bruxelles, Brussels.Google Scholar
Andrieux, D., and Gaspard, P. 2004. Fluctuation theorem and Onsager reciprocity relations. J. Chem. Phys., 121, 61676174.Google Scholar
Andrieux, D., and Gaspard, P. 2006a. Fluctuation theorem for transport in mesoscopic systems. J. Stat. Mech., 2006, P01011.Google Scholar
Andrieux, D., and Gaspard, P. 2006b. Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors. Phys. Rev. E, 74, 011906.Google Scholar
Andrieux, D., and Gaspard, P. 2007a. A fluctuation theorem for currents and non-linear response coefficients. J. Stat. Mech., 2007, P02006.Google Scholar
Andrieux, D., and Gaspard, P. 2007b. Fluctuation theorem for currents and Schnakenberg network theory. J. Stat. Phys., 127, 107131.CrossRefGoogle Scholar
Andrieux, D., and Gaspard, P. 2008a. Dynamical randomness, information, and Landauer's principle. EPL, 81, 28004.CrossRefGoogle Scholar
Andrieux, D., and Gaspard, P. 2008b. Fluctuation theorem and mesoscopic chemical clocks. J. Chem. Phys., 128, 154506.CrossRefGoogle ScholarPubMed
Andrieux, D., and Gaspard, P. 2008c. The fluctuation theorem for currents in semi-Markov processes. J. Stat. Mech., 2008, P11007.Google Scholar
Andrieux, D., and Gaspard, P. 2008d. Nonequilibrium generation of information in copolymerization processes. Proc. Natl. Acad. Sci., 105, 95169521.Google Scholar
Andrieux, D., and Gaspard, P. 2008e. Quantum work relations and response theory. Phys. Rev. Lett., 100, 230404.CrossRefGoogle ScholarPubMed
Andrieux, D., and Gaspard, P. 2008f. Temporal disorder and fluctuation theoremin chemical reactions. Phys. Rev. E, 77, 031137.CrossRefGoogle ScholarPubMed
Andrieux, D., and Gaspard, P. 2009. Stochastic approach and fluctuation theorem for ion transport. J. Stat. Mech., 2009, P02057.Google Scholar
Andrieux, D., and Gaspard, P. 2013. Information erasure in copolymers. EPL, 103, 30004.Google Scholar
Andrieux, D., Gaspard, P., Ciliberto, S., Garnier, N., Joubaud, S., and Petrosyan, A. 2007. Entropy production and time asymmetry in nonequilibrium fluctuations. Phys. Rev. Lett., 98, 150601.Google Scholar
Andrieux, D., Gaspard, P., Ciliberto, S., Garnier, N., Joubaud, S., and Petrosyan, A. 2008. Thermodynamic time asymmetry in non-equilibrium fluctuations. J. Stat. Mech., 2008, P01002.Google Scholar
Andrieux, D., Gaspard, P., Monnai, T., and Tasaki, S. 2009. The fluctuation theorem for currents in open quantum systems. New J. Phys., 11, 043014. Erratum ibid. 11, 109802.Google Scholar
Antczak, G., and Ehrlich, G. 2004. Long jump rates in surface diffusion: Won W(110). Phys. Rev. Lett., 92, 166105.Google Scholar
Aris, R. 1989. Elementary Chemical Reactor Analysis. Mineola: Dover.Google Scholar
Arnold, V. I. 1963. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv., 18, 936.CrossRefGoogle Scholar
Arnold, V. I. 1989. Mathematical Methods of Classical Mechanics. 2nd ed. New York: Springer.Google Scholar
Arnold, V. I., and Avez, A. 1968. Ergodic Problems of Classical Mechanics. New York: W. A. Benjamin.Google Scholar
Aron, C., Barci, D. G., Cugliandolo, L. F., Gonzalez Arenas, Z., and Lozano, G. S. 2016. Dynamical symmetries of Markov processes with multiplicative white noise. J. Stat. Mech., 2016, 053207.CrossRefGoogle Scholar
Ashcroft, N. W., and Mermin, N. D. 1976. Solid State Physics. New York: Holt, Rinehart and Winston.Google Scholar
Astumian, R. D. 1997. Thermodynamics and kinetics of a Brownian motor. Science, 276, 917922.CrossRefGoogle ScholarPubMed
Bachmann, S. J., Petitzon, M., and Mognetti, B. M. 2016. Bond formation kinetics affects self-assembly directed by ligand-receptor interactions. Soft Matter, 12, 95859592.Google Scholar
Baiesi, M., Jacobs, T., Maes, C., and Skantzos, N. S. 2006. Fluctuation symmetries for work and heat. Phys. Rev. E, 74, 021111.Google Scholar
Balakrishnan, V. 1979. Fluctuation-dissipation theorems from the generalized Langevin equation. Pramana, 12, 301315.CrossRefGoogle Scholar
Balescu, R. 1975. Equilibrium and Nonequilibrium Statistical Mechanics. New York: Wiley.Google Scholar
Balian, R. 1991. From Microphysics to Macrophysics. Berlin: Springer.CrossRefGoogle Scholar
Barato, A. C., and Chetrite, R. 2012. On the symmetry of current probability distributions in jump processes. J. Phys. A: Math. Theor., 45, 485002.CrossRefGoogle Scholar
Barato, A. C., and Chetrite, R. 2015. A formal view on level 2.5 large deviations and fluctuation relations. J. Stat. Phys., 160, 11541172.Google Scholar
Barato, A. C., and Seifert, U. 2015. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett., 114, 158101.CrossRefGoogle ScholarPubMed
Barato, A. C., Chetrite, R., Hinrichsen, H., and Mukamel, D. 2012. A Gallavotti-Cohen- Evans-Morriss like symmetry for a class of Markov jump processes. J. Stat. Phys., 146, 294313.CrossRefGoogle Scholar
Barbier, M., and Gaspard, P. 2018. Microreversibility, nonequilibrium current fluctuations, and response theory. J. Phys. A: Math. Theor., 51, 355001.CrossRefGoogle Scholar
Barbier, M., and Gaspard, P. 2019. Microreversibility and nonequilibrium response theory in magnetic fields. J. Phys. A: Math. Theor., 52, 025003.Google Scholar
Barbier, M., and Gaspard, P. 2020a. Microreversibility and the statistics of currents in quantum transport. Phys. Rev. E, 102, 022141.Google Scholar
Barbier, M., and Gaspard, P. 2020b. Microreversibility, nonequilibrium response, and Euler's polynomials. J. Phys. A: Math. Theor., 53, 145002.Google Scholar
Barrat, J.-L., and Bocquet, L. 1999. Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett., 82, 46714674.Google Scholar
Barroo, C., De Decker, Y., Visart de Bocarmé, T., and Gaspard, P. 2015. Fluctuating dynamics of nanoscale chemical oscillations:Theory and experiments. J. Phys. Chem. Lett., 6, 21892193.Google Scholar
Batalhõ, T. B., Souza, A. M., Sarthour, R. S., Oliveira, I. S., Paternostro, M., Lutz, E., and Serra, R. M. 2015. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 115, 190601.CrossRefGoogle Scholar
Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G., and Volpe, G. 2016. Active particles in complex and crowded environments. Rev. Mod. Phys., 88, 045006.Google Scholar
Bedeaux, D. 1986. Nonequilibrium thermodynamics and statistical physics of surfaces. Adv. Chem. Phys., 64, 47109.Google Scholar
Bedeaux, D., and Mazur, P. 1974. Brownian motion and fluctuating hydrodynamics. Physica A, 76, 247258.Google Scholar
Bedeaux, D., Albano, A. M., and Mazur, P. 1976. Boundary conditions and non-equilibrium thermodynamics. Physica A, 82, 438462.CrossRefGoogle Scholar
Bedeaux, D., Albano, A. M., and Mazur, P. 1977. Brownian motion and fluctuating hydrodynamics II; A fluctuation-dissipation theorem for the slip coefficient. Physica A, 88, 574582.Google Scholar
Benatti, F., Hudetz, T., and Knauf, A. 1998. Quantum chaos and dynamical entropy. Commun. Math. Phys., 198, 607688.Google Scholar
Benenti, G., Lepri, S., and Livi, R. 2020. Anomalous heat transport in classical many-body systems: Overview and perspectives. Frontiers Phys., 8, 292.Google Scholar
Bennett, C. H. 1973. Logical reversibility of computation. IBM J. Res. Dev., 17, 525532.Google Scholar
Bennett, C. H. 1979. Dissipation-error tradeoff in proofreading. Biosystems, 11, 8591.CrossRefGoogle ScholarPubMed
Bennett, C. H. 1982. The thermodynamics of computation – A review. Int. J. Theor. Phys., 21, 905940.Google Scholar
Benoist, T., Panati, A., and Pautrat, Y. 2020. Heat conservation and fluctuations between quantum reservoirs in the two-time measurement picture. J. Stat. Phys., 178, 893925.CrossRefGoogle Scholar
Berg-Sørensen, K., and Flyvbjerg, H. 2005. The colour of thermal noise in classical Brownian motion: A feasibility study of direct experimental observation. New J. Phys., 7, 38.Google Scholar
Bergé, P., Pomeau, Y., and Vidal, C. 1984. Order Within Chaos. New York: Wiley.Google Scholar
Bergquist, J. C., Hulet, R. G., Itano, W. M., and Wineland, D. J. 1986. Observation of quantum jumps in a singleion. Phys. Rev. Lett., 57, 16991702.Google Scholar
Bernard, W., and Callen, H. B. 1959. Irreversible thermodynamics of nonlinear processes and noise in driven systems. Rev. Mod. Phys., 31, 10171044.Google Scholar
Berne, B. J., and Pecora, R. 1976. Dynamic Light Scattering. New York: Wiley.Google Scholar
Berry, M. V., and Robbins, J. M. 1993. Chaotic classical and half-classical adiabatic reactions: Geometric magnetism and deterministic friction. Proc. R. Soc. Lond. A, 442, 659672.Google Scholar
Berry, R. S., Rice, S. A., and Ross, J. 1980. Physical Chemistry. New York: Wiley.Google Scholar
Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., and Landim, C. 2015. Macroscopic fluctuation theory. Rev. Mod. Phys., 87, 593636.Google Scholar
Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., and Lutz, E. 2012. Experimental verification of Landauer's principle linking information and thermodynamics. Nature, 483, 187189.Google Scholar
Bérut, A., Petrosyan, A., and Ciliberto, S. 2015. Information and thermodynamics: Experimental verification of Landauer's erasure principle. J. Stat. Mech., 2015, P06015.Google Scholar
Bessis, D., Paladin, G., Turchetti, G., and Vaienti, S. 1988. Generalized dimensions, entropies, and Liapunov exponents from the pressure function for strange sets. J. Stat. Phys., 51, 109134.Google Scholar
Billingsley, P. 1978. Ergodic Theory and Information. Huntington, NY: Krieger Publishing Company.Google Scholar
Birkhoff, G. D. 1927. Dynamical Systems. New York: American Mathematical Society.Google Scholar
Birkhoff, G. D. 1931. Proof of the ergodic theorem. Proc. Natl. Acad. Sci., 17, 656660.CrossRefGoogle ScholarPubMed
Bixon, M., and Zwanzig, R. 1969. Boltzmann-Langevin equation and hydrodynamic fluctuations. Phys. Rev., 187, 267272.CrossRefGoogle Scholar
Blanter, Ya. M., and Büttiker, M. 2000. Shot noise in mesoscopic conductors. Phys. Rep., 336, 1166.Google Scholar
Blickle, V., Speck, T., Helden, L., Seifert, U., and Bechinger, C. 2006. Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett., 96, 070603.Google Scholar
Blokhuis, A., Lacoste, D., and Gaspard, P. 2018. Reaction kinetics in open reactors and serial transfers between closed reactors. J. Chem. Phys., 148, 144902.Google Scholar
Bochkov, G. N., and Kuzovlev, Yu. E. 1977. General theory of thermal fluctuations in nonlinear systems. Sov. Phys. JETP, 45, 125130.Google Scholar
Bochkov, G. N., and Kuzovlev, Yu. E. 1979. Fluctuation-dissipation relations for nonequilibrium processes in open systems. Sov. Phys. JETP, 49, 543551.Google Scholar
Bochkov, G. N., and Kuzovlev, Yu. E. 1981a. Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics. I. Generalized fluctuationdissipation theorem. Physica A, 106, 443479.Google Scholar
Bochkov, G. N., and Kuzovlev, Yu. E. 1981b. Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics. II. Kinetic potential and variational principles for nonlinear irreversible processes. Physica A, 106, 480520.CrossRefGoogle Scholar
Bocquet, L., and Barrat, J.-L. 1994. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E, 49, 30793092.Google Scholar
Bogoliubov, N. N. 1946a. Kinetic Equations. J. Phys. USSR, 10, 257264.Google Scholar
Bogoliubov, N. N. 1946b. Kinetic Equations. J. Phys. USSR, 10, 265274.Google Scholar
Bollinger, J. J., and Wineland, D. J. 1990. Microplasmas. Sci. Am., 262(1), 114120.Google Scholar
Boltzmann, L. 1871. On the thermal equilibrium between polyatomic gas molecules (in German). Wiener Berichte, 63, 397418.Google Scholar
Boltzmann, L. 1872. Further studies on the thermal equilibrium of gas molecules (in German). Wiener Berichte, 66, 275370.Google Scholar
Boltzmann, L. 1877. On the relationship between the second fundamental theorem of the mechanical theory of heat and probability calculations regarding the conditions of thermal equilibrium (in German). Wiener Berichte, 76, 373435.Google Scholar
Boltzmann, L. 1887. On the mechanical analogies for the second principle of thermodynamics (in German). J. reine u. angew. Math., 100, 201212.Google Scholar
Boltzmann, L. 1896. Lectures on Gas Theory I (in German). Leipzig: Johann Ambrosius Barth.Google Scholar
Boltzmann, L. 1898. Lectures on Gas Theory II (in German). Leipzig: Johann Ambrosius Barth.Google Scholar
Boon, J. P., and Yip, S. 1980. Molecular Hydrodynamics. New York: McGraw-Hill.Google Scholar
Born, M., and Green, H. S. 1946. A general kinetic theory of liquids I: The molecular distribution functions. Proc. R. Soc. Lond. A, 188, 1018.Google Scholar
Bouchet, F. 2020. Is the Boltzmann equation reversible? A large deviation perspective on the irreversibility paradox. J. Stat. Phys., 181, 515550.Google Scholar
Bowen, R. 1975. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Berlin: Springer.CrossRefGoogle Scholar
Brantut, J.-P., Grenier, C., Meineke, J., Stadler, D., Krinner, S., Kollath, C., Esslinger, T., and Georges, A. 2013. A thermoelectric heat engine with ultracold atoms. Science, 342, 713715.CrossRefGoogle ScholarPubMed
Brenig, L., and Van den Broeck, C. 1980. Stochastic hydrodynamic theory for one-component systems. Phys. Rev. A, 21, 10391048.CrossRefGoogle Scholar
Brey, J. J., Zwanzig, R., and Dorfman, J. R. 1981. Nonlinear transport equations in statistical mechanics. Physica A, 109, 425444.Google Scholar
Briggs, M. E., Sengers, J. V., Francis, M. K., Gaspard, P., Gammon, R. W., Dorfman, J. R., and Calabrese, R. V. 2001. Tracking a colloidal particle for the measurement of dynamic entropies. Physica A, 296, 4259.Google Scholar
Brillouin, L. 1951. Maxwell's demon cannot operate: Information and entropy. J. Appl. Phys., 22, 334337.Google Scholar
Brown, R. 1828. A brief account of microscopical observations, made in the months of June, July, andAugust1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Edinb. New Phil. J., 5, 358371.Google Scholar
Brown, R., Ott, E., and Grebogi, C. 1987. Ergodic adiabatic invariants of chaotic systems. Phys. Rev. Lett., 59, 11731176.Google Scholar
Brun, R. 2009. Introduction to Reactive Gas Dynamics. Oxford: Oxford University Press.Google Scholar
Bulnes Cuetara, G., Esposito, M., and Gaspard, P. 2011. Fluctuation theorems for capacitively coupled electronic currents. Phys. Rev. B, 84, 165114.Google Scholar
Bulnes Cuetara, G., Esposito, M., Schaller, G., and Gaspard, P. 2013. Effective fluctuation theorems for electron transport in a double quantum dot coupled to a quantum point contact. Phys. Rev. B, 88, 115134.Google Scholar
Bunimovich, L. A. 1979. On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys., 65, 295312.Google Scholar
Bunimovich, L. A., and Sinai, Ya. G. 1980a. Markov partitions for dispersed billiards. Commun. Math. Phys., 78, 247280.Google Scholar
Bunimovich, L. A., and Sinai, Ya. G. 1980b. Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys., 78, 479497.Google Scholar
Burgers, J. M. 1974. The Nonlinear Diffusion Equation. Dordrecht: D. Reidel.Google Scholar
Caldeira, A. O., and Leggett, A. J. 1983. Path integral approach to quantum Brownian motion. Physica A, 121, 587616.Google Scholar
Callen, H. B. 1985. Thermodynamics and an Introduction to Thermostatistics. 2nd ed. New York: Wiley.Google Scholar
Callen, H. B., and Welton, T. A. 1951. Irreversibility and generalized noise. Phys. Rev., 83, 3440.Google Scholar
Callens, I., De Roeck, W., Jacobs, T., Maes, C., and Netocný, K. 2004. Quantum entropy production as a measure of irreversibility. Physica D, 187, 383391.Google Scholar
Calzetta, E. A., andHu, B.-L. B. 2008. Nonequilibrium Quantum Field Theory. Cambridge, UK: Cambridge University Press.Google Scholar
Campbell, A. I., Ebbens, S. J., Illien, P., and Golestanian, R. 2019. Experimental observation of flow fields around Janus spheres. Nat. Commun., 10, 3952.Google Scholar
Campisi, M., Hänggi, P., and Talkner, P. 2011. Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 83, 771791.Google Scholar
Carnot, S. 1824. Reflections on the Motive Power of Fire and on Machines Fitted to Develop That Power (in French). Paris: Bachelier.Google Scholar
Caroli, B., Caroli, C., and Roulet, B. 1992. Instabilities of planar solidification fronts, chap. 2. Pages 155296 of: Godrèche, C. (ed.), Solids Far From Equilibrium. Cambridge, UK: Cambridge University Press.Google Scholar
Casimir, H. B. G. 1945. On Onsager's principle of microscopic reversibility. Rev. Mod. Phys., 17, 343350.Google Scholar
Castiglione, P., Falcioni, M., Lesne, A., and Vulpiani, A. 2008. Chaos and Coarse Graining in Statistical Mechanics. Cambridge, UK: Cambridge University Press.Google Scholar
Cates, M. E., and Tailleur, J. 2015. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys., 6, 219244.Google Scholar
Cercignani, C. 1988. The Boltzmann Equation and Its Applications. New York: Springer.Google Scholar
Cercignani, C. 2000. Rarefied Gas Dynamics. Cambridge, UK: Cambridge University Press.Google Scholar
Chaikin, P. M., and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge, UK: Cambridge University Press.Google Scholar
Chandrasekhar, S. 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15, 189.Google Scholar
Chang, C. W., Okawa, D., Majumdar, A., and Zettl, A. 2006. Solid-state thermal rectifier. Science, 314, 11211124.Google Scholar
Chapman, S., and Cowling, T. G. 1960. The Mathematical Theory of Non-Uniform Gases. Cambridge, UK: Cambridge University Press.Google Scholar
Chernyak, V. Y., Chertkov, M., and Jarzynski, C. 2006. Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech., 2006, P08001.Google Scholar
Chetrite, R., and Gupta, S. 2011. Two refreshing views of fluctuation theorems through kinematics elements and exponential martingale. J. Stat. Phys., 143, 543584.Google Scholar
Chetrite, R., and Touchette, H. 2015. Nonequilibrium Markov processes conditioned on large deviations. Ann. Henri Poincaré, 16, 20052057.CrossRefGoogle Scholar
Chirikov, B. V. 1979. A universal instability of many-dimensional oscillator systems. Phys. Rep., 52, 265376.Google Scholar
Chowdhury, D. 2013. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective. Phys. Rep., 529, 1197.Google Scholar
Ciliberto, S. 2017. Experiments in stochastic thermodynamics: Short history and perspectives. Phys. Rev. X, 7, 021051.Google Scholar
Ciliberto, S., Gomez-Solano, R., and Petrosyan, A. 2013. Fluctuations, linear response, and currents in out-of-equilibrium Systems. Annu. Rev. Condens. Matter Phys., 4, 235261.Google Scholar
Clausius, R. 1865. On several convenient forms for the fundamental equations of the mechanical theory of heat (in German). Annalen der Physik und Chemie, 125, 353400.Google Scholar
Clercx, H.J.H., and Schram, P.P.J.M. 1992. Brownian particles in shear flow and harmonic potentials: A study of long-time tails. Phys. Rev. A, 46, 19421950.Google Scholar
Cleuren, B., Van den Broeck, C., and Kawai, R. 2006. Fluctuation theorem for the effusion of an ideal gas. Phys. Rev. E, 74, 021117.Google Scholar
Cleuren, B., Willaert, K., Engel, A., and Van den Broeck, C. 2008. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas. Phys. Rev. E, 77, 022103.Google Scholar
Coddington, E. A., and Levinson, N. 1955. Theory of Ordinary Differential Equations. New York: McGraw-Hill.Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. 1992. Atom-Photon Interactions: Basic Processes and Applications. Weinheim: Wiley-VCH.Google Scholar
Coleman, B. D., and Fox, T. G. 1963a. General theory of stationary random sequences with applications to the tacticity of polymers. J. Polym. Sci. A, 1, 31833197.Google Scholar
Coleman, B. D., and Fox, T. G. 1963b. Multistate mechanism for homogeneous ionic polymerization. I. The diastereosequence distribution. J. Chem. Phys., 38, 10651075.Google Scholar
Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I. Jr., and Bustamante, C. 2005. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 437, 231234.Google Scholar
Colquhoun, D., and Sakmann, B. 1981. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature, 294, 464466.Google Scholar
Connes, A., Narnhofer, H., and Thirring, W. 1987. Dynamical entropy of C* algebras and von Neumann algebras. Commun. Math. Phys., 112, 691719.Google Scholar
Constantin, D., and Siwy, Z. S. 2007. Poisson–Nernst–Planck model of ion current rectification through a nanofuidic diode. Phys. Rev. E, 76, 041202.Google Scholar
Cook, R. J., and Kimble, H. J. 1985. Possibility of direct observation of quantum jumps. Phys. Rev. Lett., 54, 10231026.Google Scholar
Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G. 1982. Ergodic Theory. New York: Springer.Google Scholar
Corrsin, S., and Lumley, J. 1956. On the equation of motion fora particlein turbulent fluid. Appl. Sci. Res. A, 6, 114116.Google Scholar
Coullet, P., and Iooss, G. 1990. Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett., 64, 866869.Google Scholar
Cover, T. M., and Thomas, J. A. 2006. Elements of Information Theory. 2nd ed. Hoboken, NJ: Wiley.Google Scholar
Crooks, G. E. 1998. Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys., 90, 14811487.Google Scholar
Crooks, G. E. 1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60, 27212726.Google Scholar
Crooks, G. E. 2000. Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E, 61, 23612366.Google Scholar
Cugliandolo, L. F., and Lecomte, V. 2017. Rules of calculus in the path integral representation of white noise Langevin equations: The Onsager–Machlup approach. J. Phys. A: Math. Theor., 50, 345001.CrossRefGoogle Scholar
Curie, P. 1894. On symmetry in physical phenomena, symmetry on an electric field and a magnetic field (in French). J. Phys. Théor. Appl., 3, 393415.Google Scholar
Curzon, F. L., and Ahlborn, B. 1975. Efficiency of a Carnot engine at maximum power output. Am. J. Phys., 43, 2224.Google Scholar
Cvitanovic, P., and Eckhardt, B. 1991. Periodic orbit expansions for classical smooth flows. J. Phys. A:Math. Gen., 24, L237L241.Google Scholar
Datta, S. 1995. Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge University Press.Google Scholar
De Decker, Y. 2015. On the stochastic thermodynamics of reactive systems. Physica A, 428, 178193.Google Scholar
De Donder, T., and Van Rysselberghe, P. 1936. Affinity. Menlo Park, CA: Stanford University Press.Google Scholar
de Groot, S. R., and Mazur, P. 1984. Nonequilibrium Thermodynamics. New York: Dover.Google Scholar
de Schepper, I. M., and Cohen, E. G. D. 1980. Collective modes in fluids and neutron scattering. Phys.Rev.A, 22, 287289.Google Scholar
de Vega, I., and Alonso, D. 2017. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys., 89, 015001.Google Scholar
de Vega, I., Alonso, D., Gaspard, P., and Strunz, W. T. 2005. Non-Markovian stochastic Schrödinger equations in different temperature regimes: A study of the spin-boson model. J. Chem. Phys., 122, 124106.Google Scholar
Delbrück, M. 1940. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys., 8, 120124.Google Scholar
Dellago, Ch., Posch, H. A., and Hoover, W. G. 1996. Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. Phys. Rev. E, 53, 14851501.Google Scholar
Demaeyer, J., and Gaspard, P. 2009. Noise-induced escape from bifurcating attractors: Symplectic approach in the weak-noise limit. Phys. Rev. E, 80, 031147.Google Scholar
Demaeyer, J., and Gaspard, P. 2013. A trace formula for activated escape in noisy maps. J. Stat. Mech., 2013, P10026.Google Scholar
Derrida, B. 2007. Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current. J. Stat. Mech., 2007, P07023.Google Scholar
Desai, R. C., and Kapral, R. 1972. Translational hydrodynamics and light scattering from molecular fluids. Phys. Rev. A, 6, 23772390.Google Scholar
De Vault, G. P., and McLennan, J. A. 1965. Statistical mechanics of viscoelasticity. Phys. Rev., 137, 724730.Google Scholar
Dhar, A., Kundu, A., and Kundu, A. 2019. Anomalous heat transport in one dimensional systems: A description using non-local fractional-type diffusion Equation. Frontiers Phys., 7, 159.Google Scholar
Dirac, P. A. M. 1958. The Principles of Quantum Mechanics. 4th ed. Oxford: Clarendon Press.Google Scholar
Diu, B., Guthmann, C., Lederer, D., and Roulet, B. 1989. Physique Statistique. Paris: Hermann.Google Scholar
Dorfman, J. R. 1999. An Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Dorfman, J. R., Kirkpatrick, T. R., and Sengers, J. V. 1994. Generic long-range correlations in molecular fluids. Annu. Rev. Phys. Chem., 45, 213239.Google Scholar
Dorfman, J. R., Gaspard, P., and Gilbert, T. 2002. Entropy production of diffusion in spatially periodic deterministic systems. Phys. Rev. E, 66, 026110.Google Scholar
Dorfman, J. R., van Beijeren, H., and Kirkpatrick, T. R. 2021. Contemporary Kinetic Theory of Matter. Cambridge, UK: Cambridge University Press.Google Scholar
Dufty, J. W. 1974. Gaussian model for fluctuation of a Brownian particle. Phys. Fluids, 17, 328333.Google Scholar
Dufty, J. W., Luo, K., and Wrighton, J. 2020. Generalized hydrodynamics revisited. Phys. Rev. Res., 2, 023036.Google Scholar
Duque-Zumajo, D., de la Torre, J. A., Camargo, D., and Espafiol, P. 2019. Discrete hydrodynamics near solid walls: Non-Markovian effects and the slip boundary condition. Phys. Rev. E, 100, 062133.Google Scholar
Ebers, J. J., and Moll, J. L. 1954. Large-signal behavior of junction transistors. Proc. Inst. Radio Eng., 42, 17611772.Google Scholar
Eckmann, J.-P., and Ruelle, D. 1985. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 57, 617656.Google Scholar
Eckmann, J.-P., Pillet, C.-A., and Rey-Bellet, L. 1999. Entropy production in nonlinear, thermally driven Hamiltonian systems. J. Stat. Phys., 95, 305331.Google Scholar
Edwards, D. A., Brenner, H., and Wasan, D. T. 1991. Interfacial Transport Processes and Rheology. Boston: Butterworth-Heinemann.Google Scholar
Ehrenfest, P., and Ehrenfest, T. 1911. The conceptual foundations of the statistical approach in mechanics (in German). Tome IV, 2. Teil. Pages 390 of: Klein, F., and Müller, C. (eds), Enzyklopädie der mathematischen Wissenschaften. Leipzig: Teubner. English translation. 1990. New York: Dover.Google Scholar
Einstein, A. 1905. On the movement of small particles suspended in stationary liquids demanded by the molecular kinetic theory of heat (in German). Ann. Physik, 17, 549560.Google Scholar
Einstein, A. 1926. Investigations on the Theory of the Brownian Movement. London: Methuen & Co.Google Scholar
Ellis, R.S. 1985. Entropy, Large Deviations, and Statistical Mechanics. New York: Springer.Google Scholar
Epstein, I. R., and Pojman, J. A. 1998. An Introduction to Nonlinear Chemical Dynamics. New York & Oxford: Oxford University Press.Google Scholar
Ernst, M. H., and Cohen, E. G. D. 1981. Nonequilibrium fluctuations in μ space. J. Stat. Phys., 25, 153180.Google Scholar
Ernst, M. H., and Dorfman, J. R. 1975. Nonanalytic dispersion relations for classical fluids. II. The general fluid. J. Stat. Phys., 12, 311359.Google Scholar
Ernst, M. H., Hauge, E. H., and van Leeuwen, J. M. J. 1971. Asymptotic time behavior of correlation functions. I. Kinetic terms. Phys. Rev. A, 4, 20552065.Google Scholar
Ernst, M. H., Dorfman, J. R., Nix, R., and Jacobs, D. 1995. Mean-field theory for Lyapunov exponents and Kolmogorov-Sinai entropy in Lorentz lattice gases. Phys. Rev. Lett., 74, 44164419.Google Scholar
Esposito, M., Harbola, U., and Mukamel, S. 2009. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys., 81, 16651702.Google Scholar
Esposito, M., Kawai, R., Lindenberg, K., and Van den Broeck, C. 2010. Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett., 105, 150603.Google Scholar
Evans, D. J., and Morriss, G. P. 1990. Statistical Mechanics of Nonequilibrium Liquids. London: Academic Press.Google Scholar
Evans, D. J., and Searles, D. J. 2002. The fluctuation theorem. Adv. Phys., 51, 15291585.Google Scholar
Evans, D. J., Hoover, W. H., Failor, B. H., Moran, B., and Ladd, A. J. C. 1983. Nonequilibrium molecular dynamics via Gauss's principle of least constraint. Phys. Rev. A, 28, 10161021.Google Scholar
Evans, D. J., Cohen, E. G. D., and Morriss, G. P. 1993. Probability of second law violations in shearing steady states. Phys. Rev. Lett., 71, 24012404.Google Scholar
Evans, R. 1979. The nature of liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys., 28, 143200.Google Scholar
Faggionato, A., and Di Pietro, D. 2011. Gallavotti–Cohen-type symmetry related to cycle decompositions for Markov chains and biochemical applications. J. Stat. Phys., 143, 1132.Google Scholar
Falasco, G., Pfaller, R., Bregulla, A. P., Cichos, F., and Kroy, K. 2016. Exact symmetries in the velocity fluctuations of a hot Brownian swimmer. Phys. Rev. E, 94, 030602(R).Google Scholar
Falconer, K. 1990. Fractal Geometry. Chichester: Wiley.Google Scholar
Feinberg, M. 2019. Foundations of Chemical Reaction Network Theory. Cham, Switzerland: Springer.Google Scholar
Felderhof, B. U. 1976. Force density induced on a sphere in linear hydrodynamics: II. Moving sphere, mixed boundary conditions. Physica A, 84, 569576.Google Scholar
Feller, W. 1968. An Introduction to Probability Theory and Its Applications, Vol. I. 3rd ed. New York: Wiley.Google Scholar
Feller, W. 1971. An Introduction to Probability Theory and Its Applications, Vol. II. 2nd ed. New York: Wiley.Google Scholar
Fermi, E. 1937. Thermodynamics. New York: Prentice Hall.Google Scholar
Ferry, D. K., Goodnick, S. M., and Bird, J. 2009. Transport in Nanostructures. 2nd ed. Cambridge, UK: Cambridge University Press.Google Scholar
Feshbach, H. 1962. A unified theory of nuclear reactions. II. Ann. Phys., 19, 287313.Google Scholar
Feynman, R. P., and Hibbs, A. R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill.Google Scholar
Fleming, P. D., and Cohen, C. 1976. Hydrodynamics of solids. Phys. Rev. B, 13, 500516.Google Scholar
Fogedby, H. C., and Imparato, A. 2012. Heat flows in chains driven by thermal noise. J. Stat. Mech., 2012, P04005.Google Scholar
Fogedby, H. C., and Jensen, M. H. 2005. Weak noise approach to the logistic map. J. Stat. Phys., 121, 759778.Google Scholar
Fokker, A. D. 1914. The mean energy of rotating electrical dipoles in the radiation field (in German). Ann. Physik, 348, 810820.Google Scholar
Forster, D. 1975. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Reading, MA: Benjamin/Cummings.Google Scholar
Förster, H., and Büttiker, M. 2008. Fluctuation relations without microreversibility in nonlinear transport. Phys. Rev. Lett., 101, 136805.Google Scholar
Fowler, R. H. 1929. Statistical Mechanics. Cambridge, UK: Cambridge University Press.Google Scholar
Fox, R. F., and Uhlenbeck, G. E. 1970a. Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamic fluctuations. Phys. Fluids, 13, 18931902.Google Scholar
Fox, R. F., and Uhlenbeck, G. E. 1970b. Contributions to non-equilibrium thermodynamics. II. Fluctuation theory for the Boltzmann equation. Phys. Fluids, 13, 28812890.Google Scholar
Franosch, T., Grimm, M., Belushkin, M., Mor, F. M., Foffi, G., Forró, L., and Jeney, S. 2011. Resonances arising from hydrodynamic memory in Brownian motion. Nature, 478, 8588.Google Scholar
Freitas, N., Delvenne, J.-C., andEsposito, M. 2020. Stochastic and quantum thermodynamics of driven RLC networks. Phys. Rev. X, 10, 031005.Google Scholar
Frenkel, D., and Smit, B. 2002. Understanding Molecular Simulation. 2nd ed. San Diego: Academic Press.Google Scholar
Fujisawa, T., Hayashi, T., Tomita, R., and Hirayama, Y. 2006. Bidirectional counting of single electrons. Science, 312, 16341636.Google Scholar
Gallavotti, G. 1996. Extension of Onsager's reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett., 77, 43344337.Google Scholar
Gallavotti, G., and Cohen, E.G.D. 1995. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74, 26942697.Google Scholar
Gantmacher, F. R. 1959. Applications of the Theory of Matrices. New York: Interscience Publishers.Google Scholar
Garcia Cantú Ros, A., McEwen, J.-S., and Gaspard, P. 2011. Effect of ultrafast diffusion on adsorption, desorption, and reaction processes over heterogeneous surfaces. Phys. Rev. E, 83, 021604.Google Scholar
Gardiner, C. W. 1979. A stochastic basis for isothermal equilibrium and nonequilibrium chemical thermodynamics. J. Chem. Phys., 70, 57785787.Google Scholar
Gardiner, C. W. 2004. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. 3rd ed. Berlin: Springer.Google Scholar
Gardiner, C. W., and Zoller, P. 2000. Quantum Noise. Berlin: Springer.Google Scholar
Garnier, N., and Ciliberto, S. 2005. Nonequilibrium fluctuations in a resistor. Phys. Rev. E, 71, 060101.Google Scholar
Gaspard, P. 1992. Dynamical chaos and many-body quantum systems. Pages 1942 of: Cvitanovic, P., Percival, I., and Wirzba, A. (eds), Quantum Chaos - Quantum Measurement. Dordrecht: Kluwer Academic Publishers.Google Scholar
Gaspard, P. 1994. Comment on dynamical randomness in quantum systems. Prog. Theor. Phys. Suppl., 116, 369378.Google Scholar
Gaspard, P. 1997. Entropy production in open volume-preserving systems. J. Stat. Phys., 88, 12151240.Google Scholar
Gaspard, P. 1998. Chaos, Scattering and Statistical Mechanics. Cambridge, UK: Cambridge University Press.Google Scholar
Gaspard, P. 2000. Scattering, transport & stochasticity in quantum systems. Pages 425456 of: Karkheck, J. (ed.), Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Kluwer Academic Publishers.Google Scholar
Gaspard, P. 2001. Dynamical chaos and nonequilibrium statistical mechanics. Int. J. Mod. Phys. B, 15, 209235.Google Scholar
Gaspard, P. 2002a. The correlation time of mesoscopic chemical clocks. J. Chem. Phys., 117, 89058916.Google Scholar
Gaspard, P. 2002b. Trace formula for noisy flows. J. Stat. Phys., 106, 5796.Google Scholar
Gaspard, P. 2003a. Lyapunov exponent of ion motion in microplasmas. Phys. Rev. E, 88, 056209.Google Scholar
Gaspard, P. 2003b. Nonlinear dynamics and chaos in many-particle Hamiltonian systems. Prog. Theor. Phys. Suppl., 150, 6480.Google Scholar
Gaspard, P. 2004a. Fluctuation theorem for nonequilibrium reactions. J. Chem. Phys., 120, 88988905.Google Scholar
Gaspard, P. 2004b. Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys., 117, 599615. Erratum ibid. 126, 1109 (2007).Google Scholar
Gaspard, P. 2005. Brownian motion, dynamical randomness and irreversibility. New J. Phys., 7, 77.Google Scholar
Gaspard, P. 2006. Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics. Physica A, 369, 201246.Google Scholar
Gaspard, P. 2007a. Temporal ordering of nonequilibrium fluctuations as a corollary of the second law of thermodynamics. C. R. Physique, 8, 598608.Google Scholar
Gaspard, P. 2007b. Time asymmetry in nonequilibrium statistical mechanics. Adv. Chem. Phys., 135, 83133.Google Scholar
Gaspard, P. 2008. Thermodynamic time asymmetry and nonequilibrium statistical mechanics. Pages 6787 of: Ishiwata, S., and Matsunaga, Y. (eds), Physics of Self Organization Systems. New Jersey: World Scientific.Google Scholar
Gaspard, P. 2010. Nonequilibrium nanosystems. Pages 174 of: Radons, G., Rumpf, B., and Schuster, H. G. (eds), Nonlinear Dynamics of Nanosystems. Weinheim: Wiley-VCH.Google Scholar
Gaspard, P. 2012a. Broken Z2 symmetries and fluctuations in statistical mechanics. Phys. Scr., 86, 058504.Google Scholar
Gaspard, P. 2012b. Fluctuation relations for equilibrium states with broken discrete symmetries. J. Stat. Mech., 2012, P08021.Google Scholar
Gaspard, P. 2013a. Multivariate fluctuation relations for currents. New J. Phys., 15, 115014.Google Scholar
Gaspard, P. 2013b. Self-organization at the nanoscale in far-from-equilibrium surface reactions and copolymerizations. Pages 5177 of: Mikhailov, A. S., and Ertl, G. (eds), Engineering of Chemical Complexity. Singapore: World Scientific.Google Scholar
Gaspard, P. 2013c. Time-reversal symmetry relation for nonequilibrium flows ruled by the fluctuating Boltzmann equation. Physica A, 392, 639655.Google Scholar
Gaspard, P. 2013d. Time-reversal symmetry relations for currents in quantum and stochastic nonequilibrium systems. Pages 213257 of: Klages, R., Just, W., and Jarzynski, C. (eds), Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond. Weinheim: Wiley-VCH.Google Scholar
Gaspard, P. 2013e. Time-reversal symmetryrelations for fluctuating currents in nonequilibrium systems. Acta Phys. Pol. B, 44, 815845.Google Scholar
Gaspard, P. 2014. Random paths and current fluctuations in nonequilibrium statistical mechanics. J. Math. Phys., 55, 075208.Google Scholar
Gaspard, P. 2015a. Force-velocity relation for copolymerization processes. New J. Phys., 17, 045016.Google Scholar
Gaspard, P. 2015b. Scattering approach to the thermodynamics of quantum transport. New J. Phys., 17, 045001.Google Scholar
Gaspard, P. 2015c. Scattering theory and thermodynamics of quantum transport. Ann. Phys. (Berlin), 527, 663683.Google Scholar
Gaspard, P. 2016a. Kinetics and thermodynamics of living copolymerization processes. Phil. Trans. R. Soc. A, 374, 20160147.Google Scholar
Gaspard, P. 2016b. Template-directed copolymerization, random walks along disordered tracks, and fractals. Phys. Rev. Lett., 117, 238101.Google Scholar
Gaspard, P. 2020a. Microreversibility and driven Brownian motion with hydrodynamic long-time correlations. Physica A, 552, 121823.Google Scholar
Gaspard, P. 2020b. Stochastic approach to entropy production in chemical chaos. Chaos, 30, 113103.Google Scholar
Gaspard, P., and Andrieux, D. 2011a. From the multibaker map to the fluctuation theorem for currents. Bussei Kenkyu, 97, 377397.Google Scholar
Gaspard, P., and Andrieux, D. 2011b. Nonlinear transport effects in mass separation by effusion. J. Stat. Mech., 2011, P03024.Google Scholar
Gaspard, P., and Gerritsma, E. 2007. The stochastic chemomechanics of the F1-ATPase molecular motor. J. Theor. Biol., 247, 672686.Google Scholar
Gaspard, P., and Gilbert, T. 2008a. Heat conduction and Fourier's law by consecutive local mixing and thermalization. Phys. Rev. Lett., 101, 020601.Google Scholar
Gaspard, P., and Gilbert, T. 2008b. Heat conduction and Fourier's law in a class of many particle dispersing billiards. New J. Phys., 10, 103004.Google Scholar
Gaspard, P., and Gilbert, T. 2009. Heat transport in stochastic energy exchange models of locally confined hard sphere. J. Stat. Mech., 2009, P08020.Google Scholar
Gaspard, P., and Gilbert, T. 2017. Dynamical contribution to the heat conductivity in stochastic energy exchanges of locally confined gases. J. Stat. Mech., 2017, 043210.Google Scholar
Gaspard, P., and Kapral, R. 2017. Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors. J. Chem. Phys., 147, 211101.Google Scholar
Gaspard, P., and Kapral, R. 2018a. Finite-time fluctuation theorem for diffusion-influenced surface reactions. J. Stat. Mech., 2018, 083206.Google Scholar
Gaspard, P., and Kapral, R. 2018b. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles. J. Chem. Phys., 148, 134104.Google Scholar
Gaspard, P., and Kapral, R. 2018c. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media. J. Chem. Phys., 148, 194114.Google Scholar
Gaspard, P., and Kapral, R. 2019a. The stochastic motion of self-thermophoretic Janus particles. J. Stat. Mech., 2019, 074001.Google Scholar
Gaspard, P., and Kapral, R. 2019b. Thermodynamics and statistical mechanics of chemically powered synthetic nanomotors. Adv. Phys.: X, 4, 1602480.Google Scholar
Gaspard, P., and Kapral, R. 2020. Active matter, microreversibility, and thermodynamics. Research, 2020, 973923.Google Scholar
Gaspard, P., and Lutsko, J. 2004. Imploding shock wave in a fluid of hard-core particles. Phys. Rev. E, 70, 026306.Google Scholar
Gaspard, P., and Nagaoka, M. 1999a. Non-Markovian stochastic Schrödinger equation. J. Chem. Phys., 111, 56765690.Google Scholar
Gaspard, P., and Nagaoka, M. 1999b. Slippage of initial conditions for the Redfield master equation. J. Chem. Phys., 111, 56685675.Google Scholar
Gaspard, P., and Nicolis, G. 1990. Transport properties, Lyapunov exponents, and entropy per unit time. Phys. Rev. Lett., 65, 16931696.Google Scholar
Gaspard, P., and van Beijeren, H. 2002. When do tracer particles dominate the Lyapunov spectrum? J. Stat. Phys., 109, 671704.Google Scholar
Gaspard, P., and Wang, X.-J. 1988. Sporadicity: Between periodic and chaotic dynamical behaviors. Proc. Natl. Acad. Sci., 85, 45914595.Google Scholar
Gaspard, P., and Wang, X.-J. 1993. Noise, chaos, and (e, t)-entropy per unit time. Phys. Rep., 235, 291343.Google Scholar
Gaspard, P., Nicolis, G., Provata, A., and Tasaki, S. 1995. Spectral signature of the pitchfork bifurcation: Liouville equation approach. Phys. Rev. E, 51, 7494.Google Scholar
Gaspard, P., Briggs, M. E., Francis, M. K., Sengers, J. V., Gammon, R. W., Dorfman, J. R., and Calabrese, R. V. 1998. Experimental evidence for microscopic chaos. Nature, 394, 865868.Google Scholar
Gaspard, P., Claus, I., Gilbert, T., and Dorfman, J. R. 2001. Fractality of the hydrodynamic modes of diffusion. Phys. Rev. Lett., 86, 15061509.Google Scholar
Gaspard, P., Grosfils, P., Huang, M.-J., and Kapral, R. 2018. Finite-time fluctuation theorem for diffusion-influenced surface reactions on spherical and Janus catalytic particles. J. Stat. Mech., 2018, 123206.Google Scholar
Ge, H., and Qian, H. 2009. Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system. Phys. Rev. Lett., 103, 148103.Google Scholar
Gerritsma, E., and Gaspard, P. 2010. Chemomechanical coupling and stochastic thermodynamics of the F1-ATPase molecular motor with an applied external torque. Biophys. Rev. Lett., 5, 163208.Google Scholar
Gibbs, J. W. 1902. Elementary Principles in Statistical Mechanics. New Haven, CT: Yale University Press.Google Scholar
Gilbert, T., Dorfman, J. R., and Gaspard, P. 2000. Entropy production, fractals, and relaxation to equilibrium. Phys. Rev. Lett., 85, 16061609.Google Scholar
Gillespie, D. T. 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403434.Google Scholar
Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 23402361.Google Scholar
Gillespie, D. T. 2000. The chemical Langevin equation. J. Chem. Phys., 113, 297306.Google Scholar
Gingrich, T. R., Horowitz, J. M., Perunov, N., and England, J. L. 2016. Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett., 116, 120601.Google Scholar
Glansdorff, P., and Prigogine, I. 1971. Thermodynamics of Structure, Stability, and Fluctuations. New York: Wiley.Google Scholar
Goldbeter, A. 1996. Biochemical Oscillations and Cellular Rhythms. Cambridge, UK: Cambridge University Press.Google Scholar
Goldenfeld, N. 1992. Lectures on Phase Transitions and the Renormalization Group. Reading, MA: Addison-Wesley.Google Scholar
Goldstein, H. 1950. Classical Mechanics. Reading, MA: Addison-Wesley.Google Scholar
Goldstone, J. 1961. Field theories with superconductor solutions. Il Nuovo Cimento (1955–1965), 19, 154164.Google Scholar
Golubev, D. S., Utsumi, Y., Marthaler, M., and Schön, G. 2011. Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer. Phys. Rev. B, 84, 075323.Google Scholar
Gombert, A. 2017. Microreversibility and angular momentum transfer between a thermal system and a time-dependent field (in French). Brussels: Université libre de Bruxelles. Master thesis in physics.Google Scholar
Gomez-Marin, A., Parrondo, J. M. R., and Van den Broeck, C. 2008. The “footprints” of irreversibility. EPL, 82, 50002.Google Scholar
Gonze, D., Halloy, J., and Gaspard, P. 2002. Biochemical clocks and molecular noise: Theoretical study of robustness factors. J. Chem. Phys., 116, 1099711010.Google Scholar
Goychuk, I. 2004. Quantum dynamics with non-Markovian fluctuating parameters. Phys. Rev. E, 70, 016109.Google Scholar
Grad, H. 1958. Principles of the kinetic theory of gases. Pages 205294 of: Flügge, S. (ed.), Handbuch der Physik, vol. 12. Berlin: Springer.Google Scholar
Green, H. S. 1952a. The Molecular Theory of Fluids. Amsterdam: North-Holland.Google Scholar
Green, M. S. 1952b. Markoff random processes and the statistical mechanics of timedependent phenomena. J. Chem. Phys., 20, 12811295.Google Scholar
Green, M. S. 1954. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22, 398413.Google Scholar
Grosfils, P., Gaspard, P., and Visart de Bocarmé, T. 2015. The role of fluctuations in bistability and oscillations during the H2+O2 reaction on nanosized rhodium crystals. J. Chem. Phys., 143, 064705.Google Scholar
Gu, J., and Gaspard, P. 2018. Stochastic approach and fluctuation theorem for charge transport in diodes. Phys. Rev. E, 97, 052138.Google Scholar
Gu, J., and Gaspard, P. 2019. Microreversibility, fluctuations, and nonlinear transport in transistors. Phys. Rev. E, 99, 012137.Google Scholar
Gu, J., and Gaspard, P. 2020. Counting statistics and microreversibility in stochastic models of transistors. J. Stat. Mech., 2020, 103206.Google Scholar
Guldberg, C. M., and Waage, P. 1879. On chemical affinity (in German). Erdmann's Journal für practische Chemie, 127, 69114.Google Scholar
Gustavsson, S., Leturcq, R., Simovic, B., Schleser, R., Ihn, T., Studerus, P., Ensslin, K., Driscoll, D. C., and Gossard, A. C. 2006. Counting statistics of single electron transport in a quantum dot. Phys. Rev. Lett., 96, 076605.Google Scholar
Haase, R. 1969. Thermodynamics of Irreversible Processes. New York: Dover.Google Scholar
Haberland, H., Hippler, T., Donges, J., Kostko, O., Schmidt, M., and von Issendorff, B. 2005. Melting of sodium clusters: Where do the magic numbers come from? Phys. Rev. Lett., 94, 035701.Google Scholar
Haken, H. 1975. Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys., 47, 67121.Google Scholar
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I. 1986. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A, 33, 11411151.Google Scholar
Hänggi, P., Talkner, P., and Borkovec, M. 1990. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys., 62, 251341.Google Scholar
Haraldsdóttir, H. S., and Fleming, R. M. T. 2016. Identification of conserved moieties in metabolic networks by graph theoretical analysis of atom transition networks. PLoS Comput. Biol., 12, e1004999.Google Scholar
Häring, J. M., Walz, C., Szamel, G., and Fuchs, M. 2015. Coarse-grained density and compressibility of nonideal crystals. Phys. Rev. B, 92, 184103.Google Scholar
Harris, R. J., and Schütz, G. M. 2007. Fluctuation theorems for stochastic dynamics. J. Stat. Mech., 2007, P07020.Google Scholar
Hatano, T., and Sasa, S.-i. 2001. Steady state thermodynamics of Langevin systems. Phys. Rev. Lett., 86, 34633466.Google Scholar
Hauge, E. H., and Martin-Löf, A. 1973. Fluctuating hydrodynamics and Brownian motion. J. Stat. Phys., 7, 259281.Google Scholar
Helfand, E. 1960. Transport coefficients from dissipation in a canonical ensemble. Phys. Rev., 119, 19.Google Scholar
Henss, A.-K., Sakong, S., Messer, P. K., Wiechers, J., Schuster, R., Lamb, D. C., Gross, A., and Wintterlin, J. 2019. Density fluctuations as door-opener for diffusion on crowded surfaces. Science, 363, 715718.Google Scholar
Hill, T. L. 1956. Statistical Mechanics: Principles and Selected Applications. New York: McGraw-Hill.Google Scholar
Hill, T. L. 1960. An Introduction to Statistical Thermodynamics. Reading, MA: Addison-Wesley.Google Scholar
Hill, T. L. 1989. Free Energy Transduction and Biochemical Cycle Kinetics. New York: Springer.Google Scholar
Hill, T. L., and Plesner, I. W. 1965. Studies in irreversible thermodynamics. II. A simple class of lattice models for open systems. J. Chem. Phys., 43, 267285.Google Scholar
Hills, B. P. 1975. A generalized Langevin equation for the angular velocity of a spherical Brownian particle from fluctuating hydrodynamics. Physica A, 80, 360368.Google Scholar
Hirschfelder, J. O., Curtis, C. F., and Bird, R. B. 1954. Molecular Theory of Gases and Liquids. New York: Wiley.Google Scholar
Hoover, W. H. 1985. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 16951697.Google Scholar
Horn, F., and Jackson, R. 1972. General mass action kinetics. Arch. Rational Mech. Anal., 47, 81116.Google Scholar
Horowitz, J. M. 2015. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium. J. Chem. Phys., 143, 044111.Google Scholar
Huang, K. 1987. Statistical Mechanics. 2nd ed. New York: Wiley.Google Scholar
Huang, M.-J., Schofield, J., Gaspard, P., and Kapral, R. 2018. Dynamics of Janus motors with microscopically reversible kinetics. J. Chem. Phys., 149, 024904.Google Scholar
Huang, M.-J., Schofield, J., Gaspard, P., and Kapral, R. 2019. From single particle motion to collective dynamics in Janus motor systems. J. Chem. Phys., 150, 124110.Google Scholar
Hurtado, P. I., Pérez-Espigares, C. P., del Pozo, J. J., and Garrido, P. L. 2011. Symmetries in fluctuations far from equilibrium. Proc. Natl. Acad. Sci., 108, 77047709.Google Scholar
Ishizaki, A., and Fleming, G. R. 2009. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci., 106, 1725517260.Google Scholar
Itami, M., and Sasa, S.-i. 2017. Universal form of stochastic evolution for slow variables in equilibrium systems. J. Stat. Phys., 167, 4663.Google Scholar
Itoh, H., Takahashi, A., Adachi, K., Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. 2004. Mechanically driven ATP synthesis by F1-ATPase. Nature, 427, 465468.Google Scholar
Ivanchenko, Yu. M., and Zil'berman, L. A. 1969. The Josephson effect in small tunnel contacts. Soviet Phys. JETP, 28, 12721276.Google Scholar
Jackson, J. D. 1999. Classical Electrodynamics. 3rd ed. Hoboken, NJ: Wiley.Google Scholar
Jakšic, V., and Pillet, C.-A. 1996a. On a model for quantum friction. II. Fermi's golden rule and dynamics at positive temperature. Commun. Math. Phys., 176, 619644.Google Scholar
Jakšic, V., and Pillet, C.-A. 1996b. On a model for quantum friction. III. Ergodic properties of the spin-boson system. Commun. Math. Phys., 178, 627651.Google Scholar
Jarzynski, C. 1992. Diffusion equation for energy in ergodic adiabatic ensembles. Phys. Rev. A, 46, 74987509.Google Scholar
Jarzynski, C. 1993. Multiple-time-scale approach to ergodic adiabatic systems: Another look. Phys. Rev. Lett., 71, 839842.Google Scholar
Jarzynski, C. 1995. Thermalization of a Brownian particle via coupling to low-dimensional chaos. Phys. Rev. Lett., 74, 29372940.Google Scholar
Jarzynski, C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 26902693.Google Scholar
Jarzynski, C. 2000. Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys., 98, 77102.Google Scholar
Jarzynski, C. 2006. Rare events and the convergence of exponentially averaged work values. Phys. Rev. E, 73, 046105.Google Scholar
Jarzynski, C. 2011. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys., 2, 329351.Google Scholar
Jarzynski, C., and Wójcik, D. K. 2004. Classical and quantum fluctuation theorems for heat exchange. Phys. Rev. Lett., 92, 230602.Google Scholar
Jayannavar, A. M., and Kumar, N. 1981. Orbital diamagnetism of a charged Brownian particle undergoing a birth-death process. J. Phys. A: Math. Gen., 14, 13991405.Google Scholar
Jayannavar, A. M., and Sahoo, M. 2007. Charged particle in a magnetic field: Jarzynski equality. Phys. Rev. E, 75, 032102.Google Scholar
Jiang, D.-Q., Qian, M., and Qian, M.-P. 2004. Mathematical Theory of Nonequilibrium Steady States. Berlin: Springer.Google Scholar
Joachain, C. J. 1975. Quantum Collision Theory. Amsterdam: North-Holland.Google Scholar
Johnson, J. B. 1928. Thermal agitation of electricity in conductors. Phys. Rev., 32, 97109.Google Scholar
Joubaud, S., Garnier, N. B., and Ciliberto, S. 2007. Fluctuation theorems for harmonic oscillators. J. Stat. Mech., 2007, P09018.Google Scholar
Joubaud, S., Garnier, N. B., and Ciliberto, S. 2008. Fluctuations of the total entropy production in stochastic systems. EPL, 82, 30007.Google Scholar
Joulin, G., and Vidal, P. 1998. An introduction to the instability of flames, shocks, and detonations. Pages 493673 of: Godrèche, C., and Manneville, P. (eds), Hydrodynamics and Nonlinear Instabilities. Cambridge, UK: Cambridge University Press.Google Scholar
Jülicher, F., Ajdari, A., and Prost, J. 1997. Modeling molecular motors. Rev. Mod. Phys., 69, 12691282.Google Scholar
Jülicher, F., Grill, S. W., and Salbreux, G. 2018. Hydrodynamic theory of active matter. Rep. Prog. Phys., 81, 076601.Google Scholar
Kac, M. 1956. Some remarks on the use of probability in classical statistical mechanics. Bull. Acad. Roy. Belg. (Cl. Sci.), 42, 356361.Google Scholar
Kadanoff, L. P., and Baym, G. 1962. Quantum Statistical Mechanics. New York: W. A. Benjamin.Google Scholar
Kadanoff, L. P., and Martin, P. C. 1963. Hydrodynamic equations and correlation functions. Ann. Phys., 24, 419469.Google Scholar
Kantz, H., and Grassberger, P. 1985. Repellers, semi-attractors, and long-lived chaotic transients. Physica D, 17, 7586.Google Scholar
Kapral, R. 1972. Internal relaxation in chemically reacting fluids. J. Chem. Phys., 56, 18421847.Google Scholar
Kapral, R. 2013. Perspective: Nanomotors without moving parts that propel themselves in solution. J. Chem. Phys., 138, 020901.Google Scholar
Kardar, M., Parisi, G., and Zhang, Y. Z. 1986. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56, 889892.Google Scholar
Kats, E. I., and Lebedev, V. V. 1994. Fluctuational Effects in the Dynamics of Liquid Crystals. New York: Springer.Google Scholar
Kavassalis, T. A., and Oppenheim, I. 1988. Derivation of the nonlinear hydrodynamic equations using multi-mode techniques. Physica A, 148, 521555.Google Scholar
Kawai, R., Parrondo, J. M. R., and Van den Broeck, C. 2007. Dissipation: The phase-space perspective. Phys. Rev. Lett., 98, 080602.Google Scholar
Kawasaki, K. 1971. Non-hydrodynamical behavior of two-dimensional fluids. Phys. Lett. A, 34, 1213.Google Scholar
Kenkre, V. M., Montroll, E. W., and Shlesinger, M. F. 1973. Generalized master equations for continuous-time random walks. J. Stat. Phys., 9, 4550.Google Scholar
Kheifets, S., Simha, A., Melin, K., Li, T., and Raizen, M. G. 2014. Observation of Brownian motion in liquids at short times: Instantaneous velocity and memory loss. Science, 343, 14931496.Google Scholar
Khinchin, A. Ya. 1932. To Birkhoff's solution to the ergodic problem (in German). Math. Annalen, 107, 485488.Google Scholar
Kinosita, K., Adachi, K., and Itoh, H. 2004. Rotation of F1-ATPase: How an ATP-driven molecular machine may work. Ann. Rev. Biophys. Biomol. Struct., 33, 245268.Google Scholar
Kirchhoff, G. R. 1847. On the solution of the equations to which one is led in the investigation of the linear distribution of galvanic currents (in German). Poggendorff's Ann. Phys. Chem., 72, 497508.Google Scholar
Kirkwood, J. G. 1946. The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys., 14, 180201.Google Scholar
Kitamura, K., Tokunaga, M., Iwane, A. H., and Yanagida, T. 1999. A single myosin head moves along an actin filament with regular steps of 5.3 nanometers. Nature, 397, 129134.Google Scholar
Kjelstrup, S., and Bedeaux, D. 2008. Non-Equilibrium Thermodynamics of Heterogeneous Systems. New Jersey: World Scientific.Google Scholar
Klages, R. 2007. Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics. Singapore: World Scientific.Google Scholar
Klich, I. 2003. Full counting statistics: An elementary derivation of Levitov's formula. Pages 397402 of: Nazarov, Y. V. (ed.), Quantum Noise in Mesoscopic Physics. Dordrecht: Kluwer Academic Publishers.Google Scholar
Knauf, A. 1987. Ergodic and topological properties of Coulombic periodic potentials. Commun. Math. Phys., 110, 89112.Google Scholar
Knudsen, M. 1909. Molecular flow of gases through orifices (and effusion). Ann. Physik, 28, 9991016.Google Scholar
Kolmogorov, A. N. 1954. On the conservation of quasi-periodic motions for a small change in the Hamiltonian function. Dokl. Akad. Nauk, 98, 527530.Google Scholar
Kolmogorov, A. N. 1956a. Foundations of the Theory of Probability. 2nd ed. New York: Chelsea Publishing Co.Google Scholar
Kolmogorov, A. N. 1956b. On the Shannon theory of information transmission in the case of continuous signals. IRE Trans. Inform. Theory, 1, 102108.Google Scholar
Kolmogorov, A. N. 1959. On entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR, 124, 754755.Google Scholar
Kolomeisky, A. B., and Fisher, M. E. 2007. Molecular motors: A theorist's perspective. Annu. Rev. Phys. Chem., 58, 675695.Google Scholar
Kondepudi, D., and Prigogine, I. 1998. Modern Thermodynamics: From Heat Engines to Dissipative Structures. Chichester, UK: Wiley.Google Scholar
Koopman, B. O. 1931. Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci., 17, 315318.Google Scholar
Koski, J. V., Sagawa, T., Saira, O.-P., Yoon, Y., Kutvonen, A., Solinas, P., Möttönen, M., Ala-Nissila, T., and Pekola, J. P. 2013. Distribution of entropy production in a singleelectron box. Nat. Phys., 9, 644648.Google Scholar
Kramers, H. A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284304.Google Scholar
Kreuzer, H. J., and Gortel, Z. W. 1986. Physisorption Kinetics. Berlin: Springer.Google Scholar
Krinner, S., Stadler, D., Husmann, D., Brantut, J.-P., and Esslinger, T. 2015. Observation of quantized conductance in neutral matter. Nature, 517, 6467.Google Scholar
Krinner, S., Esslinger, T., and Brantut, J.-P. 2017. Two-terminal transport measurements with cold atoms. J. Phys.: Condens. Matter, 29, 343003.Google Scholar
Krylov, N. S. 1979. Works on the Foundations of Statistical Physics. Princeton, NJ: Princeton University Press.Google Scholar
Kubo, R. 1957. Statistical mechanical theory of irreversible processes. I. General theory and simple applications in magnetic and conduction problems. J. Phys. Soc. Jpn., 12, 570586.Google Scholar
Küng, B., Rössler, C., Beck, M., Marthaler, M., Golubev, D. S., Utsumi, Y., Ihn, T., and Ensslin, K. 2012. Irreversibility on the level of single-electron tunneling. Phys. Rev. X, 2, 011001.Google Scholar
Küng, B., Rössler, C., Beck, M., Marthaler, M., Golubev, D. S., Utsumi, Y., Ihn, T., and Ensslin, K. 2013. Test of the fluctuation theorem for single-electrontransport. J. Appl. Phys., 113, 136507.Google Scholar
Kurchan, J. 1998. Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen., 31, 37193729.Google Scholar
Kurchan, J. 2000. A quantum fluctuation theorem. arXiv:cond-mat/0007360.Google Scholar
Kurchan, J. 2010. Six out of equilibrium lectures. In: Dauxois, T., Ruffo, S., and Cugliandolo, L. F. (eds), Long-Range Interacting Systems (Lecture Notes of the Les Houches Summer School, vol. 90). Oxford: Oxford University Press.Google Scholar
Kurtz, T. G. 1978. Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Appl., 6, 223240.Google Scholar
Lacoste, D., and Gaspard, P. 2014. Isometric fluctuation relations for equilibrium states with broken symmetry. Phys. Rev. Lett., 113, 240602.Google Scholar
Lacoste, D., and Gaspard, P. 2015. Fluctuation relations for equilibrium states with broken discrete or continuous symmetries. J. Stat. Mech., 2015, P11018.Google Scholar
Lacoste, D., and Mallick, K. 2009. Fluctuation theorem for the flashing ratchet model of molecular motors. Phys. Rev. E, 80, 021923.Google Scholar
Lacoste, D., Lau, A. W. C., and Mallick, K. 2008. Fluctuation theorem and large deviation function for a solvable model of a molecular motors. Phys. Rev. E, 78, 011915.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1957. Hydrodynamic fluctuations. JETP, 5, 512513.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1975. Theory of Elasticity. 2nd ed. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1976. Mechanics. 3rd ed. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1980a. Statistical Physics, Part 1. 3rd ed. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1980b. Statistical Physics, Part 2. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1981. Physical Kinetics. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1984. Electrodynamics of Continuous Media. 2nd ed. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1987. Fluid Mechanics. 2nd ed. Oxford: Pergamon Press.Google Scholar
Landauer, R. 1957. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBMJ. Res. Dev., 1, 223231.Google Scholar
Landauer, R. 1961. Irreversibility and heat generation in the computing process. IBMJ. Res. Dev., 5, 183191.Google Scholar
Langevin, P. 1908. On the theory of Brownian motion (in French). C. R. Acad. Sci. Paris, 146, 530532.Google Scholar
Langouche, F., Roekaerts, D., and Tirapegui, E. 1979. Functional integrals and the Fokker- Planck equation. Il Nuovo Cimento B, 53, 135159.Google Scholar
Lau, A. W. C., and Lubensky, T. C. 2007. State-dependent diffusion: Thermodynamic consistency and its path integral formulation. Phys. Rev. E, 76, 011123.Google Scholar
Lebowitz, J. L., and Rubin, E. 1963. Dynamical study of Brownian motion. Phys. Rev., 131, 23812396.Google Scholar
Lebowitz, J. L., and Spohn, H. 1999. A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys., 95, 333365.Google Scholar
Lecomte, V., Appert-Rolland, C., and van Wijland, F. 2005. Chaotic properties of systems with Markov dynamics. Phys. Rev. Lett., 95, 010601.Google Scholar
Lecomte, V., Appert-Rolland, C., and van Wijland, F. 2007. Thermodynamic formalism for systems with Markov dynamics. J. Stat. Phys., 127, 51106.Google Scholar
Lee, H. K., Kwon, C., and Park, H. 2013. Fluctuation theorems and entropy production with odd-parity variables. Phys. Rev. Lett., 110, 050602.Google Scholar
Leggett, A. J. 2006. Quantum Liquids. Oxford: Oxford University Press.Google Scholar
Lesovik, G. B., and Sadovskyy, I. A. 2011. Scattering matrix approach to the description of quantum electron transport. Phys. Usp., 54, 10071059.Google Scholar
Levitov, L. S., and Lesovik, G. B. 1993. Charge distribution in quantum shot noise. JETP Lett., 58, 230235.Google Scholar
Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., and Li, B. 2012. Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys., 84, 10451066.Google Scholar
Liboff, R. L. 1990. Kinetic Theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Lichtenberg, A. J., and Lieberman, M. A. 1983. Regular and Stochastic Motion. New York: Springer.Google Scholar
Lide, D. R. (ed.). 2000. CRC Handbook of Chemistry and Physics. 81st ed. Boca Raton, FL: CRC Press.Google Scholar
Liebchen, B., Marenduzzo, D., Pagonabarraga, I., and Cates, M. E. 2015. Clustering and pattern formation in chemorepulsive active colloids. Phys. Rev. Lett., 115, 258301.Google Scholar
Lindblad, G. 1976. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48, 119130.Google Scholar
Liu, S., Agarwalla, B. K., Wang, J.-S., and Li, B. 2013. Classical heat transport in anharmonic molecular junctions: Exact solutions. Phys. Rev. E, 87, 022122.Google Scholar
Logan, J., and Kac, M. 1976. Fluctuations and the Boltzmann equation. I. Phys. Rev. A, 13, 458470.Google Scholar
López, R., Lim, J. S., and Sánchez, D. 2012. Fluctuation relations for spintronics. Phys. Rev. Lett., 108, 246603.Google Scholar
Lorentz, H. A. 1905. The motion of electrons in metallic bodies I. Proc. R. Neth. Acad. Arts Sci. (KNAW), 7, 438453.Google Scholar
Lorentz, H. A. 1921. Lessons on Theoretical Physics V, Kinetic Problems (1911–1912) (in Dutch). Leiden: E. J. Brill.Google Scholar
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.Google Scholar
Lovesey, S. W. 1980. Condensed Matter Physics: Dynamic Correlations. Reading, MA: Benjamin/Cummings.Google Scholar
Ludwig, G. 1962. An equation for description of fluctuation phenomena and turbulence in gases. Physica, 28, 841860.Google Scholar
Lugatio, L. A., and Lefever, R. 1987. Spatial Dissipative Structures in Passive Optical Systems. Phys. Rev. Lett., 58, 22092211.Google Scholar
Luo, J.-L., Van den Broeck, C., and Nicolis, G. 1984. Stability criteria and fluctuations around nonequilibrium states. Z. Phys. B: Condens. Matter, 56, 165170.Google Scholar
Lutsko, J. F. 2012. A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys., 136, 034509.Google Scholar
Ma, W., Lutsko, J. F., Rimer, J. D., and Vekilov, P. G. 2020. Antagonistic cooperativity between crystal growth modifiers. Nature, 577, 497501.CrossRefGoogle ScholarPubMed
Mabillard, J., and Gaspard, P. 2020. Microscopic approach to the macrodynamics of matter with broken symmetries. J. Stat. Mech., 2020, 103203.Google Scholar
Mabillard, J., and Gaspard, P. 2021. Nonequilibrium statistical mechanics of crystals. J. Stat. Mech., 2021, 063207.Google Scholar
MacDonald, D. K. C. 1948–1949. Spontaneous fluctuations. Rep. Prog. Phys., 12, 5681.Google Scholar
Machlup, S., and Onsager, L. 1953. Fluctuations and irreversible processes. II. Systems with kinetic energy. Phys. Rev., 91, 15121515.Google Scholar
MacKay, R. S. 1993. Renormalization in Area-Preserving Maps. Singapore: World Scientific.Google Scholar
Maes, C. 1999. The fluctuation theorem as a Gibbs property. J. Stat. Phys., 95, 367392.Google Scholar
Maes, C. 2020. Frenesy: Time-symmetric dynamical activity in nonequilibria. Phys. Rep., 850, 133.Google Scholar
Maes, C., and Netocný, K. 2003. Time-reversal and entropy. J. Stat. Phys., 110, 269310.Google Scholar
Maes, C., and van Wieren, M. H. 2006. Time-symmetric fluctuations in nonequilibrium systems. Phys. Rev. Lett., 96, 240601.Google Scholar
Maes, C., Netocný, K., and Verschuere, M. 2003. Heat conduction networks. J. Stat. Phys., 111, 12191244.Google Scholar
Mandelbrot, B. B. 1982. The Fractal Geometry of Nature. San Francisco: Freeman and Co.Google Scholar
Maragakis, P., Ritort, F., Bustamante, C., Karplus, M., and Crooks, G. E. 2008. Bayesian estimates of free energies from nonequilibrium work data in the presence of instrument noise. J. Chem. Phys., 129, 024102.Google Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M., and Simha, R. A. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys., 85, 11431189.Google Scholar
Mareschal, M., and Kestemont, E. 1987. Experimental evidence for convective rolls in finite two-dimensional molecular models. Nature, 329, 427429.Google Scholar
Martin, P. C., Parodi, O., and Pershan, P. S. 1972. Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A, 6, 24012420.Google Scholar
Masters, A. J. 1998. Some notes on the dynamics of nematic liquid crystals. Mol. Phys., 95, 251257.Google Scholar
Mátyás, L., and Gaspard, P. 2005. Entropy production in diffusion-reaction systems: The reactive random Lorentz gas. Phys. Rev. E, 71, 036147.Google Scholar
Maxey, M. R., and Riley, J. J. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26, 883889.Google Scholar
Maxwell, J. C. 1860. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Lond. Edinb. Dubl. Phil. Mag. J. Sci., 4th Series, 19, 1932.Google Scholar
Maxwell, J. C. 1867. On the dynamical theory of gases. Phil. Trans. R. Soc. London, 157, 4988.Google Scholar
Maxwell, J. C. 1871. Theory of Heat. London: Longmans, Green, and Co.Google Scholar
Maxwell, J. C. 1879. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. London, 170, 231256.Google Scholar
Mazenko, G. F. 2006. Nonequilibrium Statistical Mechanics. Weinheim: Wiley-VCH.Google Scholar
Mazo, R. M. 2002. Brownian Motion: Fluctuations, Dynamics and Applications. Oxford: Clarendon Press.Google Scholar
Mazur, P. 1999. Mesoscopic nonequilibrium thermodynamics; irreversible processes and fluctuations. Physica A, 274, 491504.Google Scholar
Mazur, P., and Bedeaux, D. 1974. A generalization of Faxén's theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow. Physica A, 76, 235246.Google Scholar
McEwen, J.-S., Gaspard, P., Visart de Bocarmé, T., and Kruse, N. 2009. Nanometric chemical clocks. Proc. Natl. Acad. Sci., 106, 30063010.Google Scholar
McEwen, J.-S., Gaspard, P., Visart de Bocarmé, T., and Kruse, N. 2010a. Electric field induced oscillations in the catalytic water production on rhodium: A theoretical analysis. Surf. Sci., 604, 13531368.Google Scholar
McEwen, J.-S., Garcia Cantú Ros, A., Gaspard, P., Visart de Bocarmé, T., and Kruse, N. 2010b. Non-equilibrium surface pattern formation during catalytic reactions with nanoscale resolution: Investigations of the electric field influence. Catalysis Today, 154, 7584.Google Scholar
McLennan, J. A. 1960. Statistical mechanics of transport in fluids. Phys. Fluids, 3, 493502.Google Scholar
McLennan, J. A. 1961. Nonlinear effects in transport theory. Phys. Fluids, 4, 13191324.Google Scholar
McLennan, J. A. 1963. The formal statistical theory of transport processes. Adv. Chem. Phys., 5, 261317.Google Scholar
McQuarrie, D. A. 1967. Stochastic approach to chemical kinetics. J. Appl. Prob., 4, 413478.Google Scholar
Mermin, N. D. 1968. Crystalline order in two dimensions. Phys. Rev., 176, 250254.Google Scholar
Mermin, N. D., and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 11331136.Google Scholar
Michaelis, L., and Menten, M. L. 1913. The kinetics of invertase action (in German). Biochem. Z., 49, 333369.Google Scholar
Michal, G., and Schomburg, D. (eds). 2012. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. 2nd ed. Hoboken, NJ: Wiley.Google Scholar
Miller, D. G. 1960. Thermodynamics of irreversible processes: The experimental verification of the Onsager reciprocal relations. Chem. Rev., 60, 1537.Google Scholar
Min, W., Jiang, L., Yu, J., Kou, S. C., Qian, H., and Xie, X. S. 2005. Nonequilibrium steady state of a nanometric biochemical system: Determining the thermodynamic driving force from single enzyme turnover time traces. Nano Lett., 5, 23732378.Google Scholar
Moffitt, J. R., Chemla, Y. R., and Bustamante, C. 2010. Methods in statistical kinetics. Methods Enzymol., 475, 221257.Google Scholar
Mognetti, B. M., Cicuta, P., and Di Michele, L. 2019. Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Rep. Prog. Phys., 82, 116601.Google Scholar
Moore, W. J. 1972. Physical Chemistry. 5th ed. London: Longman.Google Scholar
Mori, H. 1958. Statistical-mechanical theory of transport in fluids. Phys. Rev., 112, 18291842.CrossRefGoogle Scholar
Mori, H. 1965. Transport, collective motion, and Brownian motion. Prog. Theor. Phys., 33, 423455.Google Scholar
Moser, J. 1973. Stable and Random Motions in Dynamical Systems. Princeton, NJ: Princeton University Press.Google Scholar
Nakamura, S., Yamauchi, Y., Hashisaka, M., Chida, K., Kobayashi, K., Ono, T., Leturcq, R., Ensslin, K., Saito, K., Utsumi, Y., and Gossard, A. C. 2010. Nonequilibrium fluctuation relations in a quantum coherent conductor. Phys. Rev. Lett., 104, 080602.Google Scholar
Nakamura, S., Yamauchi, Y., Hashisaka, M., Chida, K., Kobayashi, K., Ono, T., Leturcq, R., Ensslin, K., Saito, K., Utsumi, Y., and Gossard, A. C. 2011. Fluctuation theorem and microreversibility in a quantum coherent conductor. Phys. Rev. B, 83, 155431.Google Scholar
Nakano, H., and Sasa, S.-i. 2019. Statistical mechanical expressions of slip length. J. Stat. Phys., 176, 312357.Google Scholar
Nambu, Y. 1960. Quasiparticles and gauge invariance in the theory of superconductivity. Phys. Rev., 117, 648663.CrossRefGoogle Scholar
Narnhofer, H., and Thirring, W. 1987. Dynamical entropy of quasifree automorphisms. Lett. Math. Phys., 14, 8996.Google Scholar
Navier, C.-L. 1827. On the laws of motion of fluids (in French). Mem. Acad. Sci. Inst. Fr., 6, 389440.Google Scholar
Nazarov, Yu. V., and Blanter, Ya. M. 2009. Quantum Transport: Introduction to Nanoscience. Cambridge, UK: Cambridge University Press.Google Scholar
Nelson, D. L., and Cox, M. M. 2017. Lehninger Principles of Biochemistry. 7th ed. New York: W. H. Freeman.Google Scholar
Neri, I. 2020. Second law of thermodynamics at stopping times. Phys. Rev. Lett., 124, 040601.Google Scholar
Neri, I., Roldán, E., and Jülicher, F. 2017. Statistics of infima and stopping times of entropy production and applications to active molecular processes. Phys. Rev. X, 7, 011019.Google Scholar
Nicolis, G. 1972. Fluctuations around nonequilibrium states in open nonlinear systems. J. Stat. Phys., 6, 195222.Google Scholar
Nicolis, G. 1979. Irreversible thermodynamics. Rep. Prog. Phys., 42, 225268.Google Scholar
Nicolis, G. 1995. Introduction to Nonlinear Science. Cambridge, UK: Cambridge University Press.Google Scholar
Nicolis, G., and Malek Mansour, M. 1984. Onset of spatial correlations in nonequilibrium systems: A master-equation description. Phys. Rev. A, 29, 28452853.Google Scholar
Nicolis, G., and Prigogine, I. 1971. Fluctuations in nonequilibrium systems. Proc. Natl. Acad. Sci., 68, 21022107.Google Scholar
Nicolis, G., and Prigogine, I. 1977. Self-Organization in Nonequilibrium Systems. New York: Wiley.Google Scholar
Noether, E. 1918. Invariant variation problems (in German). Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math-phys. Klasse, 235257.Google Scholar
Noh, J. D., and Park, J.-M. 2012. Fluctuation relation for heat. Phys. Rev. Lett., 108, 240603.Google Scholar
Nonner, W., and Eisenberg, B. 1998. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. Biophys. J., 75, 12871305.Google Scholar
Nosé, S. 1984a. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52, 255268.CrossRefGoogle Scholar
Nosé, S. 1984b. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511519.Google Scholar
Nyquist, H. 1928. Thermal agitation of electrical charges in conductors. Phys. Rev., 32, 110113.Google Scholar
Onsager, L. 1931a. Reciprocal relations in irreversible processes I. Phys. Rev., 37, 405426.CrossRefGoogle Scholar
Onsager, L. 1931b. Reciprocal relations in irreversible processes II. Phys. Rev., 38, 22652279.Google Scholar
Onsager, L., and Machlup, S. 1953. Fluctuations and irreversible processes. Phys. Rev., 91, 15051512.Google Scholar
Onuki, A. 1978. On fluctuations in space. J. Stat. Phys., 18, 475499.Google Scholar
Oono, Y., and Paniconi, M. 1998. Steady state thermodynamics. Prog. Theor. Phys. Suppl., 130, 2944.Google Scholar
Oosawa, F., and Hayashi, S. 1986. The loose coupling mechanism in molecular machines of living cells. Adv. Biophys., 22, 151183.Google Scholar
Oppenheim, I., and Levine, R. D. 1979. Nonlinear transport processes: Hydrodynamics. Physica A, 99, 383402.Google Scholar
Ortiz de Zárate, J. M., and Sengers, J. V. 2006. Hydrodynamic Fluctuations in Fluids and Fluid Mixtures. Amsterdam: Elsevier.Google Scholar
Ott, E. 1993. Chaos in Dynamical Systems. Cambridge, UK: Cambridge University Press.Google Scholar
Pathria, R. K. 1972. Statistical Mechanics. Oxford: Pergamon.Google Scholar
Paul, G. L., and Pusey, P. N. 1981. Observation of a long-time tail in Brownian motion. J. Phys. A: Math. Gen., 14, 33013327.Google Scholar
Pauli, W. 1928. On the H-theorem of entropy increase from the standpoint of the new quantum mechanics (in German). Pages 3045 of: Debye, P. (ed.), Probleme der Modernen Physik: Sommerfeld-Festschrift. Leipzig: Hirzel.Google Scholar
Pauling, L. 1970. General Chemistry. 3rd ed. San Francisco: Freeman and Co.Google Scholar
Penrose, O., and Fife, P. C. 1990. Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D, 43, 4462.Google Scholar
Perrin, J. 1910. Brownian Movement and Molecular Reality. London: Taylor and Francis.Google Scholar
Peterson, R. L. 1967. Formal theory of nonlinear response. Rev. Mod. Phys., 39, 6977.Google Scholar
Piccirelli, R. A. 1968. Theory of the dynamics of simple fluids for large spatial gradients and long memory. Phys. Rev., 175, 7798.Google Scholar
Pietzonka, P., Barato, A. C., and Seifert, U. 2016. Universal bounds on current fluctuations. Phys. Rev. E, 93, 052145.CrossRefGoogle ScholarPubMed
Pigolotti, S., Neri, I., Roldán, E., and Jülicher, F. 2017. Generic properties of stochastic entropy production. Phys. Rev. Lett., 119, 140604.Google Scholar
Planck, M. 1914. The Theory of Heat Radiation. 2nd ed. Philadelphia, PA: P. Blakiston's Son & Co.Google Scholar
Planck, M. 1917. On a theorem of statistical dynamics and its extension to quantum theory (in German). Sitz. König. Preuss. Akad. Wiss., 24, 324341.Google Scholar
Polettini, M., and Esposito, M. 2014. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. J. Chem. Phys., 141, 024117.Google Scholar
Pollack, G. L. 1969. Kapitza resistance. Rev. Mod. Phys., 41, 4881.Google Scholar
Pollicott, M. 1985. On the rate of mixing of Axiom A flows. Invent. Math., 81, 413426.Google Scholar
Pollicott, M. 1986. Meromorphic extensions of generalised zeta functions. Invent. Math., 85, 147164.Google Scholar
Popkov, V., Schadschneider, A., Schmidt, J., and Schütz, G. M. 2015. Fibonacci family of dynamical universality classes. Proc. Natl. Acad. Sci., 112, 1264512650.Google Scholar
Porporato, A., Rigby, J. R., and Daly, E. 2007. Irreversibility and fluctuation theorem in stationary time series. Phys. Rev. Lett., 98, 094101.Google Scholar
Pottier, N. 2009. Nonequilibrium Statistical Physics: Linear Irreversible Processes. Oxford: Oxford University Press.Google Scholar
Prähofer, M., and Spohn, H. 2004. Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys., 115, 255279.Google Scholar
Present, R. D. 1958. Kinetic Theory of Gases. New York: McGraw-Hill.Google Scholar
Pressé, S., Ghosh, K., Lee, J., and Dill, K. A. 2013. Principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys., 85, 11151141.Google Scholar
Prigogine, I. 1949. The domain of validity of the thermodynamics of irreversible phenomena (in French). Physica, 15, 272284.Google Scholar
Prigogine, I. 1967. Introduction to Thermodynamics of Irreversible Processes. New York: Wiley.Google Scholar
Prigogine, I., and Lefever, R. 1968. Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys., 48, 16951700.Google Scholar
Prigogine, I., and Nicolis, G. 1967. Symmetry breaking instabilities in dissipative systems. J. Chem. Phys., 46, 35423550.Google Scholar
Probstein, R. F. 2003. Physicochemical Hydrodynamics. 2nd ed. Hoboken, NJ: Wiley.Google Scholar
Provata, A., Nicolis, C., and Nicolis, G. 2014. DNA viewed as an out-of-equilibrium structure. Phys. Rev. E, 89, 052105.Google Scholar
Qian, H., and Beard, D. A. 2005. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem., 114, 213220.Google Scholar
Qian, H., and Xie, X. S. 2006. Generalized Haldane equation and fluctuation theorem in the steady-state cycle kinetics of single enzymes. Phys. Rev. E, 74, 010902.Google Scholar
Rao, R., and Esposito, M. 2016. Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics. Phys. Rev. X, 6, 041064.Google Scholar
Rao, R., and Esposito, M. 2018a. Conservation laws and work fluctuation relations in chemical reaction networks. J. Chem. Phys., 149, 245101.Google Scholar
Rao, R., and Esposito, M. 2018b. Conservation laws shape dissipation. New J. Phys., 20, 023007.Google Scholar
Rayleigh, Lord (Strutt, J. W.). 1891. Dynamical problems in illustration of the theory of gases. Lond. Edinb. Dubl. Phil. Mag. J. Sci., 5th Series, 32, 424445.Google Scholar
Redfield, A. G. 1965. The theory of relaxation processes. Adv. Magn. Opt. Reson., 1, 132.Google Scholar
Reichl, L. E. 1998. A Modern Course in Statistical Physics. 2nd ed. New York: Wiley.Google Scholar
Reigh, S. Y., Huang, M.-J., Schofield, J., and Kapral, R. 2016. Microscopic and continuum descriptions of Janus motor fluid flow fields. Phil. Trans. R. Soc. A, 374, 20160140.Google Scholar
Reitz, J. R., and Milford, F. J. 1967. Foundations of Electromagnetic Theory. 2nd ed. Reading, MA: Addison-Wesley.Google Scholar
Résibois, P., and De Leener, M. 1977. Classical Kinetic Theory of Fluids. New York: Wiley.Google Scholar
Résibois, P., and Lebowitz, J. L. 1965. Microscopic theory of Brownian motion in an oscillating field; Connection with macroscopic theory. Phys. Rev., 139, A1101A1111.Google Scholar
Rice, S. A., and Zhao, M. 2000. Optical Control of Molecular Dynamics. New York: Wiley.Google Scholar
Risken, H. 1989. The Fokker-Planck Equation. 2nd ed. Berlin: Springer.Google Scholar
Roberts, J. A. G., and Quispel, G. R. W. 1992. Chaos and time-reversal symmetry: Order and chaos in reversible dynamical systems. Phys. Rep., 216, 63177.Google Scholar
Robertson, B. 1966. Equations of motion in nonequilibrium statistical mechanics. Phys. Rev., 144, 151161.Google Scholar
Robertson, B. 1967. Equations of motion in nonequilibrium statistical mechanics. II. Energy transport. Phys. Rev., 160, 175183.Google Scholar
Robertson, B., Schofield, J., Gaspard, P., and Kapral, R. 2020. Molecular theory of Langevin dynamics for active self-diffusiophoretic colloids. J. Chem. Phys., 153, 124104.Google Scholar
Roldán, E. 2014. Irreversibility and Dissipation in Microscopic Systems. Cham: Springer.Google Scholar
Roldán, E., and Parrondo, J. M. R. 2010. Estimating dissipation from single stationary trajectories. Phys. Rev. Lett., 105, 150607.Google Scholar
Ronis, D., Kovac, J., and Oppenheim, I. 1977. Molecular hydrodynamics of inhomogeneous systems: The origin of slip boundary conditions. Physica A, 88, 215241.Google Scholar
Rowlinson, J. S., and Widom, B. 1989. Molecular Theory of Capillarity. Oxford: Clarendon Press.Google Scholar
Rubí, J. M., and Mazur, P. 2000. Nonequilibrium thermodynamics and hydrodynamic fluctuations. Physica A, 276, 477488.Google Scholar
Ruelle, D. 1978. Thermodynamic Formalism. Reading, MA: Addison-Wesley.Google Scholar
Ruelle, D. 1986a. Locating resonances for Axiom A dynamical systems. J. Stat. Phys., 44, 281292.Google Scholar
Ruelle, D. 1986b. Resonances of chaotic dynamical systems. Phys. Rev. Lett., 56, 405407.Google Scholar
Rutherford, E., Geiger, H., and Bateman, H. 1910. The probability variations in the distribution of a particles. Lond. Edinb. Dubl. Phil. Mag. J. Sci., 20, 698707.Google Scholar
Sagawa, T., and Ueda, M. 2010. Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett., 104, 090602.Google Scholar
Saha, A., and Jayannavar, A. M. 2008. Nonequilibrium work distributions for a trapped Brownian particle in a time-dependent magnetic field. Phys. Rev. E, 77, 022105.Google Scholar
Saha, S., Golestanian, R., and Ramaswamy, S. 2014. Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E, 89, 062316.Google Scholar
Saito, K., and Dhar, A. 2011. Generating function formula of heat transfer in harmonic networks. Phys. Rev. E, 83, 041121.Google Scholar
Saito, K., and Utsumi, Y. 2008. Symmetry in full counting statistics, fluctuation theorem, and relations among nonlinear transport coefficients in the presence of a magnetic field. Phys. Rev. B, 78, 115429.Google Scholar
Sánchez, D., and Büttiker, M. 2004. Magnetic-field asymmetry of nonlinear mesoscopic transport. Phys. Rev. Lett., 93, 106802.Google Scholar
Sasa, S.-i. 2014. Derivation of hydrodynamics from the Hamiltonian description of particle systems. Phys. Rev. Lett., 112, 100602.Google Scholar
Sauter, Th., Neuhauser, W., Blatt, R., and Toschek, P. E. 1986. Observation of quantum jumps. Phys. Rev. Lett., 57, 16961698.Google Scholar
Schlögl, F. 1971. On thermodynamics near a steady state. Z. Phys., 248, 446458.Google Scholar
Schlögl, F. 1972. Chemical reaction models for non-equilibrium phase transitions. Z. Phys., 253, 147161.Google Scholar
Schnakenberg, J. 1976. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys., 48, 571585.Google Scholar
Schnitzer, M. J., Visscher, K., and Block, S. M. 2000. Force production by single kinesin motors. Nat. Cell Biol., 2, 718723.Google Scholar
Schöll, E. 2001. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Cambridge, UK: Cambridge University Press.Google Scholar
Scott, S. K. 1991. Chemical Chaos. Oxford: Clarendon Press.Google Scholar
Scriven, L. E. 1960. Dynamics of a fluid interface. Chem. Eng. Sci., 12, 98108.Google Scholar
Sedra, A. S., and Smith, K. C. 2004. Microelectronic Circuits. 5th ed. New York: Oxford University Press.Google Scholar
Segel, I. H. 1975. Enzyme Kinetics. New York: Wiley.Google Scholar
Seifert, U. 2005a. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett., 95, 040602.Google Scholar
Seifert, U. 2005b. Fluctuation theorem for a single enzyme or molecular motor. Europhys. Lett., 70, 3641.Google Scholar
Seifert, U. 2011. Stochastic thermodynamics of single enzymes and molecular motors. Eur. Phys. J.E, 34, 26.Google Scholar
Seifert, U. 2012. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75, 126001.Google Scholar
Seitaridou, E., Inamdar, M. M., Phillips, R., Ghosh, K., and Dill, K. 2007. Measuring flux distributions for diffusion in the small-numbers limit. J. Phys. Chem. B, 111, 22882292.Google Scholar
Sekimoto, K. 1997. Kinetic characterization of heat bath and the energetics of thermal ratchetmodels. J. Phys. Soc. Jpn., 66, 12341237.Google Scholar
Sekimoto, K. 1998. Langevin equation and thermodynamics. Prog. Theor. Phys. Suppl., 130, 1727.Google Scholar
Sekimoto, K. 2010. Stochastic Energetics. Berlin: Springer.Google Scholar
Servantie, J., and Gaspard, P. 2003. Methods of calculation of a friction coefficient: Application to nanotubes. Phys. Rev. Lett., 91, 185503.Google Scholar
Servantie, J., and Gaspard, P. 2006a. Rotational dynamics and friction in double-walled carbon nanotubes. Phys. Rev. Lett., 97, 186106.Google Scholar
Servantie, J., and Gaspard, P. 2006b. Translational dynamics and friction in double-walled carbon nanotubes. Phys. Rev. B, 73, 186106.Google Scholar
Sevick, E. M., Prabhakar, R., Williams, S. R., and Searles, D. J. 2008. Fluctuation theorems. Annu. Rev. Phys. Chem., 59, 603633.Google Scholar
Shannon, C. E., and Weaver, W. 1949. The Mathematical Theory of Communication. Urbana, IL: The University of Illinois Press.Google Scholar
Shear, D. 1967. An analog of the Boltzmann H-theorem (a Liapunov function) for systems of coupled chemical reactions. J. Theor. Biol., 16, 212228.Google Scholar
Shockley, W. 1949. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J., 28, 435489.Google Scholar
Shockley, W., Sparks, M., and Teal, G. K. 1951. p-n junction transistors. Phys. Rev., 83, 151162.Google Scholar
Siegert, A. J. F. 1949. On the approach to statistical equilibrium. Phys. Rev., 76, 17081714.Google Scholar
Sinai, Ya. G. 1959. On the notion of entropy of dynamical systems. Dokl. Akad. Nauk SSSR, 124, 768771.Google Scholar
Sinai, Ya. G. 1970. Dynamical systems with elastic reflections. Russ. Math. Surv., 25, 137189.Google Scholar
Sköld, K., Rowe, J. M., Ostrowski, G., and Randolph, P. D. 1972. Coherent-and incoherent- scattering laws of liquid argon. Phys. Rev. A, 6, 11071131.Google Scholar
Smeets, R. M. M., Keyser, U. F., Dekker, N. H., and Dekker, C. 2008. Noise in solid-state nanopores. Proc. Natl. Acad. Sci., 105, 417421.Google Scholar
Sowa, Y., Rowe, A. D., Leake, M. C., Yakushi, T., Homma, M., Ishijima, A., and Berry, R. M. 2005. Direct observation of steps in rotation of the bacterial flagellar motor. Nature, 437, 916919.Google Scholar
Speck, T., and Seifert, U. 2005. Integral fluctuation theorem for the housekeeping heat. J. Phys. A: Math. Gen., 38, L581L588.Google Scholar
Speck, T., Blickle, V., Bechinger, C., and Seifert, U. 2007. Distribution of entropy production for a colloidal particle in a nonequilibrium steady state. EPL, 79, 30002.Google Scholar
Spinney, R. E., and Ford, I. J. 2012. Nonequilibrium thermodynamics of stochastic systems with odd and even variables. Phys. Rev. Lett., 108, 170603.Google Scholar
Spohn, H. 1980. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys., 52, 569615.Google Scholar
Spohn, H. 1991. Large Scale Dynamics of Interacting Particles. Berlin: Springer.Google Scholar
Spohn, H. 2014. Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys., 154, 11911227.Google Scholar
Srednicki, M. 1994. Chaos and quantum thermalization. Phys. Rev. E, 50, 888901.Google Scholar
Steckelmacher, W. 1986. Knudsen flow75 years on. Rep. Prog. Phys., 49, 10831107.Google Scholar
Stratonovich, R. L. 1992. Nonlinear nonequilibrium thermodynamics I. Berlin: Springer.Google Scholar
Stratonovich, R. L. 1994. Nonlinear nonequilibrium thermodynamics II. Advanced theory. Berlin: Springer.Google Scholar
Strogatz, S. H. 1994. Nonlinear Dynamics and Chaos. Cambridge, MA: Perseus Books.Google Scholar
Strunz, W. T., Diósi, L., Gisin, N., and Yu, T. 1999. Quantum trajectories for Brownian motion. Phys. Rev. Lett., 83, 49094913.Google Scholar
Suárez, A., Silbey, R., and Oppenheim, I. 1992. Memory effects in the relaxation of quantum open systems. J. Chem. Phys., 97, 51015107.Google Scholar
Sutherland, W. 1905. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Phil. Mag., 9, 781785.Google Scholar
Svensson, E. C., Brockhouse, B. N., and Rowe, J. M. 1967. Crystal dynamics of copper. Phys. Rev., 155, 619632.Google Scholar
Svoboda, K., Schmidt, C. F., Schnapp, B. J., and Block, S. M. 1993. Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721727.Google Scholar
Szamel, G. 1997. Statistical mechanics of dissipative transport in crystals. J. Stat. Phys., 87, 10671082.Google Scholar
Szamel, G., and Ernst, M. H. 1993. Slow modes in crystals: A method to study elastic constants. Phys. Rev. B, 48, 112118.Google Scholar
Szász, D. 1996. Boltzmann's ergodic hypothesis, a conjecture for centuries? Studia Sci. Math. Hungarica, 31, 299322.Google Scholar
Szilard, L. 1929. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings (in German). Zeitschrift für Physik, 53, 840856.Google Scholar
Tasaki, H. 2000. Jarzynski relations for quantum systems and some applications. arXiv:cond-mat/0009244.Google Scholar
Tasaki, S., and Gaspard, P. 1995. Fick's law and fractality of nonequilibrium stationary states in a reversible multibaker map. J. Stat. Phys., 81, 935987.Google Scholar
Thirring, W. 1983. Quantum Mechanics of Large Systems. New York: Springer.Google Scholar
Tobiska, J., and Nazarov, Yu. V. 2005. Inelastic interaction corrections and universal relations for full counting statistics in a quantum contact. Phys. Rev. B, 72, 235328.Google Scholar
Tolman, R. C. 1938. The Principles of Statistical Mechanics. Oxford: Clarendon Press.Google Scholar
Touchette, H. 2009. The large deviation approach to statistical mechanics. Phys. Rep., 478, 170.Google Scholar
Toyabe, S., Watanabe-Nakayama, T., Okamoto, T., Kudo, S., and Muneyuki, E. 2011. Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc. Natl. Acad. Sci., 108, 1795117956.Google Scholar
Tran, D. T., Dauphin, A., Grushin, A. G., Zoller, P., and Goldman, N. 2017. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms. Sci. Adv., 3, e1701207.Google Scholar
Trepagnier, E. H., Jarzynski, C., Ritort, F., Crooks, G. E., Bustamante, C. J., and Liphardt, J. 2004. Experimental test of Hatano and Sasa's nonequilibrium steady-state equality. Proc. Natl. Acad. Sci., 101, 1503815041.Google Scholar
Uehling, E. A., and Uhlenbeck, G. E. 1933. Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev., 43, 552561.Google Scholar
Uhlenbeck, G. E., and Ornstein, L. S. 1930. On the theory of the Brownian motion. Phys. Rev., 36, 823841.Google Scholar
Utsumi, Y., and Saito, K. 2009. Fluctuation theorem in a quantum-dot Aharonov–Bohm interferometer. Phys. Rev. B, 79, 235311.Google Scholar
Utsumi, Y., Golubev, D. S., Marthaler, M., Saito, K., Fujisawa, T., and Schön, G. 2010. Bidirectional single-electron counting and the fluctuation theorem. Phys. Rev. B, 81, 125331.Google Scholar
Valadares, L. F., Tao, Y.-G., Zacharia, N. S., Kitaev, V., Galembeck, F., Kapral, R., and Ozin, G. A. 2010. Catalytic nanomotors: Self-propelled sphere dimers. Small, 6, 565572.Google Scholar
van Beijeren, H. 2012. Exact results for anomalous transportin one-dimensional Hamiltonian systems. Phys. Rev. Lett., 108, 180601.Google Scholar
van Beijeren, H., Dorfman, J. R., Posch, H. A., and Dellago, Ch. 1997. Kolmogorov-Sinai entropy for dilute gases in equilibrium. Phys. Rev. E, 56, 52725277.Google Scholar
Van den Broeck, C. 2005. Thermodynamic efficiency at maximum power. Phys. Rev. Lett., 95, 190602.Google Scholar
Van den Broeck, C. 2013. Stochasticthermodynamics: A brief introduction. Pages 155193 of: Bechinger, C., Sciortino, F., and Ziherl, P. (eds), Physics of Complex Colloids, Proceedings of the International School of Physics “Enrico Fermi,” vol. 184. Amsterdam: IOS Press.Google Scholar
Van den Broeck, C., and Esposito, M. 2010a. Three detailed fluctuation theorems. Phys. Rev. Lett., 104, 090601.Google Scholar
Van den Broeck, C., and Esposito, M. 2010b. Three faces of the second law. I. Master equation formulation. Phys. Rev. E, 82, 011143.Google Scholar
Van den Broeck, C., and Esposito, M. 2010c. Three faces of the second law. II. Fokker- Planck formulation. Phys. Rev. E, 82, 011144.Google Scholar
Van den Broeck, C., and Esposito, M. 2015. Ensemble and trajectory thermodynamics: A brief introduction. Physica A, 418, 616.Google Scholar
Van den Broeck, C., Meurs, P., and Kawai, R. 2005. From Maxwell demon to Brownian motor. New J. Phys., 7, 10.Google Scholar
van Hemmen, J. L. 1980. Dynamics and ergodicity of the infinite harmonic crystal. Phys. Rep., 65, 43149.Google Scholar
Van Hove, L. 1954. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev., 95, 249262.Google Scholar
van Kampen, N. G. 1974. Fluctuations in Boltzmann's equation. Phys. Lett. A, 50, 237238.Google Scholar
van Kampen, N. G. 1981. Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland.Google Scholar
van Zon, R., and Cohen, E. G. D. 2003a. Extension of the fluctuation theorem. Phys. Rev. Lett., 91, 110601.Google Scholar
van Zon, R., and Cohen, E. G. D. 2003b. Stationary and transient work-fluctuation theorems for a dragged Brownian particle. Phys. Rev. E, 67, 046102.Google Scholar
van Zon, R., and Cohen, E. G. D. 2004. Extended heat-fluctuation theorems for a system with deterministic and stochastic forces. Phys. Rev. E, 69, 056121.Google Scholar
van Zon, R., Ciliberto, S., and Cohen, E. G. D. 2004. Power and heat fluctuation theorems for electric circuits. Phys. Rev. Lett., 92, 130601.Google Scholar
Verley, G., Willaert, T., Van den Broeck, C., and Esposito, M. 2014. Universal theory of efficiency fluctuations. Phys. Rev. E, 90, 052145.Google Scholar
Viscardy, S., and Gaspard, P. 2003. Viscosity in the escape-rate formalism. Phys. Rev. E, 68, 041205.Google Scholar
Viscardy, S., Servantie, J., and Gaspard, P. 2007a. Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity. J. Chem. Phys., 126, 184512.Google Scholar
Viscardy, S., Servantie, J., and Gaspard, P. 2007b. Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity. J. Chem. Phys., 126, 184513.Google Scholar
Vladimirsky, V., and Terletsky, Y. A. 1945. Hydrodynamic theory of translational Brownian motion. Zh. Eksp. Theor. Fiz., 15, 258262.Google Scholar
von Smoluchowski, M. 1906. Kinetic theory of Brownian motion and suspension (in German). Ann. Physik, 21, 756780.Google Scholar
Wachtel, A., Rao, R., and Esposito, M. 2018. Thermodynamically consistent coarse graining of biocatalysts beyond Michaelis–Menten. New J. Phys., 20, 042002.Google Scholar
Wallace, D. C. 1987. On the role of density fluctuations in the entropy of a fluid. J. Chem. Phys., 87, 22822284.Google Scholar
Wallace, D. C. 1998. Thermodynamics of Crystals. Mineola, NY: Dover.Google Scholar
Walz, C., and Fuchs, M. 2010. Displacement field and elastic constants in nonideal crystals. Phys. Rev. B, 81, 134110.Google Scholar
Wang, C., and Feldman, D. E. 2015. Fluctuation relations for spin currents. Phys. Rev. B, 92, 064406.Google Scholar
Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J., and Evans, D. J. 2002. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89, 050601.Google Scholar
Wang, H., and Oster, G. 1998. Energy transduction in the F1 motor of ATP synthase. Nature, 396, 279282.Google Scholar
Wang, S.-L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J., and McFadden, G. B. 1993. Thermodynamically-consistent phase-field models for solidification. Physica D, 69, 189200.Google Scholar
Wegscheider, R. 1901. On simultaneous equilibria and the relationships between thermodynamics and reaction kinetics of homogeneous systems (in German). Monatshefte für Chemie, 32, 849906.Google Scholar
Weinberg, S. 1995. The Quantum Theory of Fields, vol. I. Cambridge, UK: Cambridge University Press.Google Scholar
Weinberg, S. 1996. The Quantum Theory of Fields, vol. II. Cambridge, UK: Cambridge University Press.Google Scholar
Weiss, G. 1975. Time reversibility of linear stochastic processes. J. Appl. Prob., 12, 831836.Google Scholar
Wigner, E. P. 1932. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40, 749760.Google Scholar
Wigner, E. P. 1963. Events, laws of nature, and invariance principles. Nobel Lecture, December 12. The Nobel Foundation, Stockholm, Sweden.Google Scholar
Wood, K., Van den Broeck, C., Kawai, R., and Lindenberg, K. 2007. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer. Phys. Rev. E, 75, 061116.Google Scholar
Xiao, T. J., and Zhou, Y. 2018. Stochastic thermodynamics of mesoscopic electrochemical reactions. Chin. J. Chem. Phys., 31, 6165.Google Scholar
Xie, S. 2001. Single-molecule approach to enzymology. Single Mol., 2, 229236.Google Scholar
Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr., and Itoh, H. 2001. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature, 410, 898904.Google Scholar
Yvon, J. 1935. The Statistical Theory of Fluids and the Equation of State (in French). Paris: Hermann & Cie.Google Scholar
Yvon, J. 1966. Correlations and Entropy in Classical Statistical Mechanics (in French). Paris: Dunod.Google Scholar
Zubarev, D. N. 1966. A statistical operator for non stationary processes. Sov. Phys. Doklady, 10, 850852.Google Scholar
Zwanzig, R. W. 1961. Statistical mechanics of irreversibility. Pages 106141 of: Lectures in Theoretical Physics, Vol. III. New York: Interscience Publishers.Google Scholar
Zwanzig, R. 2001. Nonequilibrium Statistical Mechanics. Oxford: Oxford University Press.Google Scholar
Zwanzig, R., and Bixon, M. 1970. Hydrodynamic theory of the velocity correlation function. Phys. Rev. A, 2, 20052012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Pierre Gaspard, Université Libre de Bruxelles
  • Book: The Statistical Mechanics of Irreversible Phenomena
  • Online publication: 14 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108563055.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Pierre Gaspard, Université Libre de Bruxelles
  • Book: The Statistical Mechanics of Irreversible Phenomena
  • Online publication: 14 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108563055.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Pierre Gaspard, Université Libre de Bruxelles
  • Book: The Statistical Mechanics of Irreversible Phenomena
  • Online publication: 14 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108563055.023
Available formats
×