Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:20:23.208Z Has data issue: false hasContentIssue false

10 - Bio-based Solid Fuels

Published online by Cambridge University Press:  01 December 2022

Jacqueline O'Connor
Affiliation:
Pennsylvania State University
Bobby Noble
Affiliation:
Electric Power Research Institute
Tim Lieuwen
Affiliation:
Georgia Institute of Technology
Get access

Summary

Bio-based solid fuels are the oldest and most widely exploited energy sources. Bio-based solid fuels have the potential to approach, if not achieve, net-zero-carbon emissions. Biomass is a “net zero” fuel in that the same carbon atoms pulled from the atmosphere as CO2 are sequestered by the biomass as plant tissue and are re-released as CO2 upon burning. This prevents the addition of CO2 into the atmosphere beyond what is present in the natural carbon cycle. Today’s bio-based solid fuels encompass everything from the raw biomass our ancestors relied upon for heat to thermochemically and biochemically processed biomasses for use as solid fuels in a variety of commercial energy generation scenarios. This chapter summarizes solid biofuel sources, processing, and roles in a future net-zero energy system.

Type
Chapter
Information
Renewable Fuels
Sources, Conversion, and Utilization
, pp. 329 - 368
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelha, P., Vilela, C. M., Nanou, P., Carbo, M., Janssen, A. and Leiser, S. et al. (2019). Combustion improvements of upgraded biomass by washing and torrefaction. Fuel, 253, 10181033. doi: 10.1016/j.fuel.2019.05.050.CrossRefGoogle Scholar
Agblevor, F. A., Besler, S., and Wiselogel, A. E. (1995). Fast pyrolysis of stored biomass feedstocks. Energy and Fuels, 9(4), 635–40. doi: 10.1021/ef00052a010.CrossRefGoogle Scholar
Ahmadi, L., Kannangara, M., and Bensebaa, F. (2020). Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective. Sustainable Energy Technologies and Assessments, 37, 100627. doi: 10.1016/j.seta.2019.100627.Google Scholar
Alexopoulou, E., Zanetti, F., Papazoglou, E. G., Christou, M., Papatheohari, Y., Tsiotas, K. and Papamichael, I. (2017). Long-term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Industrial Crops and Products, 107, 446–52. doi: 10.1016/j.indcrop.2017.05.027.CrossRefGoogle Scholar
Alibardi, L. and Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147–55. doi: 10.1016/j.wasman.2014.11.019.CrossRefGoogle ScholarPubMed
Amen, R., Hameed, J., Albashar, G., Kamran, H. W., Shah, M. U. H., Zaman, M. K. U., Mukhtar, A., Saqib, S., Ch, S. I., Ibrahim, M. Ullah, S., Al-Sehemi, A. G., Ahmad, S. R., Klemes, J. J., Bokhari, A., and Asif, S. (2021). Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: A sustainable case study. Journal of Cleaner Production, 287, 125575. doi: 10.1016/j.jclepro.2020.125575.CrossRefGoogle Scholar
Amutio, M., Lopez, G., Aguado, R., Bilbao, J. and Olazar, M. (2012). Biomass oxidative flash pyrolysis: Autothermal operation, yields and product properties. Energy and Fuels. American Chemical Society, 26(2), 1353–62. doi: 10.1021/ef201662x.Google Scholar
Andrigo, P., Bagatin, R., and Pagani, G. (1999). Fixed bed reactors. Catalysis Today, 52(2–3), 197221. doi: 10.1016/S0920-5861(99)00076-0.CrossRefGoogle Scholar
Asadieraghi, M. and Wan Daud, W. M. A. (2014). Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Conversion and Management, 82, 7182. doi: 10.1016/j.enconman.2014.03.007.Google Scholar
Atienza, S. G., Satovic, Z., Petersen, K. K., Dolstra, O. and Martin, A. (2003). Influencing combustion quality in Miscanthus sinensis Anderss. Identification of QTLs for calcium, phosphorus and sulphur content. Plant Breeding, 122(2), 141–45. doi: 10.1046/j.1439-0523.2003.00826.x.Google Scholar
Azad, A. K. and Rasul, M. (2019). Advanced biofuels: Applications, technologies and environmental sustainability, advanced biofuels: Applications, technologies and environmental sustainability. Woodhead Publishing. doi: 10.1016/C2018-0-00461-2.Google Scholar
Baral, N. R., Quiroz-Arita, C., and Bradley, T. H. (2017). Uncertainties in corn stover feedstock supply logistics cost and life-cycle greenhouse gas emissions for butanol production. Applied Energy, 208, 1343–56. doi: 10.1016/j.apenergy.2017.09.020.CrossRefGoogle Scholar
Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., and Fiori, L. (2015). Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresource Technology, 182, 217–24. doi: 10.1016/j.biortech.2015.01.118.Google Scholar
Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E. C., Weiss-Hortala, E., and Fiori, L. (2016). Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Management, 47, 114–21. doi: 10.1016/j.wasman.2015.05.013.Google Scholar
Bayer, P. and Aklin, M. (2020). The European Union Emissions Trading System reduced CO2 emissions despite low prices. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 8804–12. doi: 10.1073/pnas.1918128117.Google Scholar
Beagle, E. and Belmont, E. (2019). Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy, 128, 267–75. doi: 10.1016/j.enpol.2019.01.006.Google Scholar
Benavente, V., Calabuig, E., and Fullana, A. (2015). Upgrading of moist agro-industrial wastes by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 113, 8998. doi: 10.1016/j.jaap.2014.11.004.Google Scholar
Bilgen, S. and Kaygusuz, K. (2008). The calculation of the chemical exergies of coal-based fuels by using the higher heating values. Applied Energy, 85(8), 776–85. doi: 10.1016/j.apenergy.2008.02.001.Google Scholar
Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., and Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70–6. doi: 10.1016/j.algal.2012.02.002.CrossRefGoogle Scholar
Biofuels International (2017). UK’s “first” commercial-scale hydrothermal carbonisation (HTC) unit launched at CPL Industries’ Immingham site, November. Available at: https://biofuels-news.com/display_news/13136/uks_first_commercialscale_hydrothermal_carbonisation_htc_unit_launched_at_cpl_industries_immingham_site/.Google Scholar
Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 73(S1), 999–1010. doi: 10.1139/b95-350.CrossRefGoogle Scholar
Bläsing, M., Tanner, J., Winters, T., and Müller, M. (2017). Brief evaluation of selected fuel characteristics of thermochemically upgraded wheat straw: Torrefaction and hydrothermal carbonization. Energy and Fuels, 31(12), 14426–29. doi: 10.1021/acs.energyfuels.7b02910.Google Scholar
Bolsen, T. and Cook, F. L. (2008). The polls – trends: Public opinion on energy policy: 1974–2006. Public Opinion Quarterly, 364–88. doi: 10.1093/poq/nfn019.Google Scholar
Bond, J. Q., Upadhye, A. A., Olcay, H., Tompsett, G. A., Jae, J., Xing, R., Alonso, D. M., Wang, D., Zhang, T., Kumar, R., Foster, A., Sen, S. M., Maravelias, C. T., Malina, R., Barrett, S. R. H., Lobo, R., Wyman, C. E., Dumesic, J. A., and Huber, G. W. (2014). Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy & Environmental Science, 7, 1500. doi: 10.1039/C3EE43846EGoogle Scholar
Burlington Electric Department (2021) McNeil Generating Station. Available at: www.burlingtonelectric.com/mcneil/ (Accessed: May 31, 2021).Google Scholar
Cai, J., Li, B., Chen, C., Wang, J., Zhao, M. and Zhang, K., (2016). Hydrothermal carbonization of tobacco stalk for fuel application. Bioresource Technology, 220, 305–11. doi: 10.1016/j.biortech.2016.08.098.Google Scholar
Cao, Y. and Pawłowski, A. (2012). Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 16(3), 1657–65. doi: 10.1016/j.rser.2011.12.014.CrossRefGoogle Scholar
Carpenter, D., Westover, T.L., Czernik, S., and Jablonski, W. (2014). Biomass feedstocks for renewable fuel production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry, 16(2), 384406. doi: 10.1039/c3gc41631c.Google Scholar
Chen, C. Y., Chen, W. H. and Hung, C. H. (2021). Combustion performance and emissions from torrefied and water washed biomass using a kg-scale burner. Journal of Hazardous Materials, 402, 123468. doi: 10.1016/j.jhazmat.2020.123468.CrossRefGoogle ScholarPubMed
Choudhary, S., Liang, S., Cai, H., Keoleian, G. A., Miller, S. A., Kelly, J., and Xu, M. (2014). Reference and functional unit can change bioenergy pathway choices. International Journal of Life Cycle Assessment, 19(4), 796805. doi: 10.1007/s11367-013-0692-z.Google Scholar
Christian, D. G. (2000). Biomass for renewable energy, fuels, and chemicals. Journal of Environmental Quality, 29(2), 662–3. doi: 10.2134/jeq2000.00472425002900020040x.Google Scholar
Clifton-Brown, J. et al. (2019). Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy, 11(1), 118–51. doi: 10.1111/gcbb.12566.Google Scholar
Czernik, S., Scahill, J. and Diebold, J. (1995). The production of liquid fuel by fast pyrolysis of biomass. Journal of Solar Energy Engineering, Transactions of the ASME, 117(1), 26. doi: 10.1115/1.2847714.Google Scholar
Daniel, G. F., Nilsson, T., and Singh, A. P. (1987). Degradation of lignocellulosics by unique tunnel-forming bacteria. Canadian Journal of Microbiology, 33(10), 943–48. doi: 10.1139/m87-166.CrossRefGoogle Scholar
Davidsson, K. O., Korsgren, J. G., Pettersson, J. B., and Jäglid, U. (2002). The effects of fuel washing techniques on alkali release from biomass. Fuel, 81(2), 137–42. doi: 10.1016/S0016-2361(01)00132-6.Google Scholar
Delshad, A. B., Raymond, L., Sawicki, V., and Wegener, D. T. (2010). Public attitudes toward political and technological options for biofuels. Energy Policy, 38(7), 3414–25. doi: 10.1016/j.enpol.2010.02.015.CrossRefGoogle Scholar
Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–48. doi: 10.1016/j.jaap.2004.07.003.Google Scholar
Ding, K., Zhong, Z., Zhong, D., Zhang, B., and Qian, X. (2016). Pyrolysis of municipal solid waste in a fluidized bed for producing valuable pyrolytic oils. Clean Technologies and Environmental Policy, 18(4), 1111–21. doi: 10.1007/s10098-016-1102-6.Google Scholar
Di Blasi, C., Signorelli, G., Di Russo, C., and Rea, G. (1999). Product distribution from pyrolysis of wood and agricultural residues. Industrial and Engineering Chemistry Research, 38(6), 2216–24. doi: 10.1021/ie980711u.Google Scholar
Dou, G. and Goldfarb, J. (2017). In situ upgrading of pyrolysis biofuels by bentonite clay with simultaneous production of heterogeneous adsorbents for water treatment. Fuel, 195, 273–83. doi: 10.1016/j.fuel.2017.01.052.Google Scholar
Düdder, H., Wütscher, A., Stoll, R., and Muhler, M. (2016). Synthesis and characterization of lignite-like fuels obtained by hydrothermal carbonization of cellulose. Fuel, 171, 54–8. doi: 10.1016/j.fuel.2015.12.031.Google Scholar
Dufour, A., Girods, P., Masson, E., Rogaume, Y., and Zoulalian, A. (2009). Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution. International Journal of Hydrogen Energy, 34(4), 1726–34. doi: 10.1016/j.ijhydene.2008.11.075.Google Scholar
EIA (2018). Renewable energy explained – US Energy Information Administration (EIA), Washington. Available at: www.eia.gov/energyexplained/renewable-sources/ (Accessed: May 21, 2021).Google Scholar
EIA (2019). Wood and wood waste. Available at: www.eia.gov/energyexplained/biomass/woodand-wood-waste.php (Accessed: May 26, 2021).Google Scholar
EIA (2021a). Electric power monthly, EIA. Available at: www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a (Accessed: June 13, 2021)Google Scholar
EIA (2021b). U.S. Gasoline and Diesel Retail Prices, US Energy Information Administration. Available at: www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_m.htm (Accessed: June 13, 2021).Google Scholar
Ellis, C. (2018). World Bank: Global waste generation could increase 70% by 2050, www.wastedive.com/. Available at: www.wastedive.com/news/world-bank-global-waste-generation-2050/533031/ (Accessed: May 26, 2021).Google Scholar
Eom, I. Y., Kim, K. H., Kim, J. Y., Lee, S. M., Yeo, H. M., Choi, I. G., and Choi, J. W. (2011). Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource Technology, 102(3), 3437–44. doi: 10.1016/j.biortech.2010.10.056.CrossRefGoogle ScholarPubMed
EPA (2019a). National overview: Facts and figures on materials, wastes and recycling’, Epa, 113. Available at: www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (Accessed: June 25, 2020).Google Scholar
EPA (2019b). Economics of Biofuels, Environmental Protection Agency (EPA). Available at: www.epa.gov/environmental-economics/economics-biofuels (Accessed: June 8, 2020).Google Scholar
Faaij, A. (2018). Biomass resources, worldwide. Encyclopedia of sustainability science and technology. Springer, 153. doi: 10.1007/978-1-4939-2493-6_259-3.Google Scholar
Fibria Celulose SA Ensyn Renewables Inc (2017). Integrated process for the pre-treatment of biomass and production of bio-oil. EP, CA, AU, BR, WO, UY, CN, US: United States. Available at: https://patents.google.com/patent/AU2017268727A1/en (Accessed: June 2, 2021).Google Scholar
Gao, L., Volpe, M., Lucian, M., Fiori, L. and Goldfarb, J. L. (2019). Does hydrothermal carbonization as a biomass pretreatment reduce fuel segregation of coal-biomass blends during oxidation? Energy Conversion and Management, 181, 93104. doi: 10.1016/J.ENCONMAN.2018.12.009.Google Scholar
Gao, L. and Goldfarb, J. L. (2018). Solid waste to biofuels and heterogeneous sorbents via pyrolysis of wheat straw in the presence of fly ash as an in situ catalyst. Journal of Analytical and Applied Pyrolysis, 137, 1 January, 96105. doi: 10.1016/j.jaap.2018.11.014.Google Scholar
Goldfarb, J., Buessing, M., and Kriner, D. (2016). Geographic proximity to coal plants and US public support for extending the Production Tax Credit. Energy Policy, 99, 299307. doi: 10.1016/j.enpol.2016.03.029.Google Scholar
Goldfarb, J. L., Dou, G., Salari, M., and Grinstaff, M. W. (2017). Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems. ACS Sustainable Chemistry and Engineering, 5(4), 3046–54. doi: 10.1021/acssuschemeng.6b02735.CrossRefGoogle Scholar
Goldfarb, J. L. and Kriner, D. L. (2021). U.S. public support for biofuels tax credits: Cost frames, local fuel prices, and the moderating influence of partisanship. Energy Policy, 149, 112098. doi: 10.1016/j.enpol.2020.112098.Google Scholar
Gopu, C., Gao, L., Volpe, M., Fiori, L., and Goldfarb, J. L. (2018). Valorizing municipal solid waste: Waste to energy and activated carbons for water treatment via pyrolysis. Journal of Analytical and Applied Pyrolysis, 133, 4858. doi: 10.1016/j.jaap.2018.05.002.CrossRefGoogle Scholar
Gunnarsson, H., Rönnqvist, M., and Lundgren, J. T. (2004). Supply chain modelling of forest fuel. European Journal of Operational Research, 158(1), 103–23. doi: 10.1016/S0377-2217(03)00354-0.CrossRefGoogle Scholar
Guo, Q., Cheng, Z., Chen, G., Yan, B., Li, J., and Ronsse, F. (2020). Assessment of biomass demineralization on gasification: From experimental investigation, mechanism to potential application. Science of the Total Environment, 726, 138634. doi: 10.1016/j.scitotenv.2020.138634.Google Scholar
Gupta, D., Mahajani, S. M., and Garg, A. (2019). Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresource Technology, 285, 121329. doi: 10.1016/j.biortech.2019.121329.Google Scholar
Han, T., Zhang, B., Li, H., Zhang, H., Yang, Y., Hu, L., Ren, X., Wang, S., Zheng, L., Han, X., Liu, G., Zhang, J., Fei, W., Tang, Y., Yang, S., Bao, X., and Bao, J. (2021). Year-round storage operation of three major agricultural crop residue biomasses by performing dry acid pretreatment at Regional Collection Depots. ACS Sustainable Chemistry and Engineering, 9(13), 4722–34. doi: 10.1021/acssuschemeng.0c08739.Google Scholar
Hand, A. M. and Tyndall, J. C. (2018). A qualitative investigation of farmer and rancher perceptions of trees and woody biomass production on marginal agricultural land. Forests, 9(11), 724. doi: 10.3390/f9110724.Google Scholar
Hansson, J. and Leveau, A. (2011). Biomass gasifier database for computer simulation purposes. Available at: www.sgc.se. (Accessed: May 31, 2021).Google Scholar
Harris Poll (2016). What America is thinking on energy issues renewable fuel standard. Available at: www.api.org/~/media/Files/News/2016/16-April/What-America-Is-Thinking-RFS-April-2016.pdf (Accessed: June 8, 2020).Google Scholar
Ingelia SPA (2018). INGELIA biorefinery – from organic waste to high value bioproducts. Available at: https://ingelia.com/?lang=en (Accessed: June 3, 2018).Google Scholar
International Energy Agency (IEA) (2021). Net zero by 2050: A roadmap for the global energy sector. Available at: www.iea.org/t&c/ (Accessed: June 6, 2021).Google Scholar
Ischia, G., Fiori, L., Gao, L., and Goldfarb, J. L. (2021). Valorizing municipal solid waste via integrating hydrothermal carbonization and downstream extraction for biofuel production. Journal of Cleaner Production, 289, 125781. doi: 10.1016/j.jclepro.2021.125781.Google Scholar
Işıtan, S., Ceylan, S., Topcu, Y., Hintz, C., Tefft, J., Chellappa, T., Guo, J. and Goldfarb, J. L. (2016). Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis. Energy Conversion and Management, 127, 576–88. doi: 10.1016/j.enconman.2016.09.031.Google Scholar
Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., and Ashwath, N. (2012). Biofuels production through biomass pyrolysis: A technological review. Energies, 5(12), 49525001. doi: 10.3390/en5124952.Google Scholar
Jesse, S. D., Zhang, Y., Margenot, A. J., and Davidson, P. C. (2019). Hydroponic lettuce production using treated post-hydrothermal liquefaction wastewater (PHW). Sustainability (Switzerland), 11(13), 3605. doi: 10.3390/su11133605.Google Scholar
Jin, H., Sun, E., Xu, Y., Guo, R., Zheng, M., Huang, H., and Zhang, S. (2018). Hydrochar derived from anaerobic solid digestates of swine manure and rice straw: A potential recyclable material. BioResources, 13(1), 1019–34. doi: 10.15376/biores.13.1.1019-1034.Google Scholar
Jones, J. & Wulf, T. (1998). The Vermont Gasifier.Google Scholar
Kalderis, D., Kotti, M. S., Méndez, A. and Gascó, G. (2014). Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth, 5(1), 477–83. doi: 10.5194/se-5-477-2014.Google Scholar
Kambo, H. S. and Dutta, A. (2014). Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy, 135, 182–91. doi: 10.1016/j.apenergy.2014.08.094.Google Scholar
Kambo, H. S. and Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–78. doi: 10.1016/j.rser.2015.01.050.Google Scholar
Kanzian, C., Kühmaier, M., Zazgornik, J., and Stampfer, K. (2013). Design of forest energy supply networks using multi-objective optimization. Biomass and Bioenergy, 58, 294302. doi: 10.1016/j.biombioe.2013.10.009.CrossRefGoogle Scholar
Keown, D. M., Hayashi, J. and Li, C. Z. (2008). Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass. Fuel, 87(7), 1187–94. doi: 10.1016/j.fuel.2007.05.056.Google Scholar
Kirtania, K., Bhaskar, T., Pandey, A., Mohan, S. V., Lee, D.-J. and Khanal, S. K. (2018). Thermochemical conversion processes for waste biorefinery. Waste biorefinery: Potential and perspectives. 129–56. doi: 10.1016/B978-0-444-63992-9.00004-5.Google Scholar
Kløverpris, J. H., Scheel, C. N., Schmidt, J., Grant, B., Smith, W., and Bentham, M. J. (2020). Assessing life cycle impacts from changes in agricultural practices of crop production: Methodological description and case study of microbial phosphate inoculant. International Journal of Life Cycle Assessment, 25(10), 19912007. doi: 10.1007/s11367-020-01767-z.Google Scholar
Knowlton, T. M. (2013). Fluidized bed reactor design and scale-up. Fluidized bed technologies for near-zero emission combustion and gasification. Woodhead Publishing Limited, Cambridge UK 481523. doi: 10.1533/9780857098801.2.481.Google Scholar
Kuo, W. C., Lasek, J., Słowik, K., Głód, K., Jagustyn, B., Li, Y. H., and Cygan, A. (2019). Low-temperature pre-treatment of municipal solid waste for efficient application in combustion systems. Energy Conversion and Management, 196, 525–35. doi: 10.1016/j.enconman.2019.06.007.Google Scholar
Langholtz, M., Stokes, B., and Eaton, L. (2016). 2016 Billion-Ton Report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstocks. U.S. Department of Energy. doi: 10.2172/1271651.Google Scholar
Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y. K., Jung, J., and Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology. 148, 196201. doi: 10.1016/j.biortech.2013.08.135.Google Scholar
Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., Fühner, C., Bens, O., Kern, J., and Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71106. doi: 10.4155/bfs.10.81.Google Scholar
Lin, J. C., Mariuzza, D., Volpe, M., Fiori, L., Ceylan, S. and Goldfarb, J. L. (2021). Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresource Technology, 328, 124765. doi: 10.1016/j.biortech.2021.124765.Google Scholar
Lin, Y., Ma, X., Peng, X., Hu, S., Yu, Z., and Fang, S. (2015). Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Applied Thermal Engineering, 91, 574–82. doi: 10.1016/j.applthermaleng.2015.08.064.CrossRefGoogle Scholar
Lu, Q., Xie, W. L., Hu, B., Liu, J., Zhao, W., Zhang, B., and Wang, T. P. (2021). A novel interaction mechanism in lignin pyrolysis: Phenolics-assisted hydrogen transfer for the decomposition of the β-O-4 linkage. Combustion and Flame, 225, 395405. doi: 10.1016/j.combustflame.2020.11.011.Google Scholar
Lucian, M., Volpe, M., Gao, L., Piro, G., Goldfarb, J. L., and Fiori, L. (2018). Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel, 233 (January), 257–68. doi: 10.1016/j.fuel.2018.06.060.CrossRefGoogle Scholar
Lucian, M., Volpe, M., and Fiori, L. (2019). Hydrothermal carbonization kinetics of lignocellulosic agro-wastes: Experimental data and modeling. Energies, 12(3), 516. doi: 10.3390/en12030516.CrossRefGoogle Scholar
Ma, Q., Han, L., and Huang, G. (2018). Effect of water-washing of wheat straw and hydrothermal temperature on its hydrochar evolution and combustion properties. Bioresource Technology, 269, 96103. doi: 10.1016/j.biortech.2018.08.082.CrossRefGoogle ScholarPubMed
MacDonald, J. M., Ribaudo, M. O., Livingston, M. J., Beckman, J., and Huang, W. (2009). Manure use for fertilizer and for energy: Report to Congress. www.ers.usda.gov/publications/pub-details/?pubid=42740Google Scholar
Madsen, R. B., Biller, P., Jensen, M. M., Becker, J., Iversen, B. B., and Glasius, M. (2016). Predicting the chemical composition of aqueous phase from hydrothermal liquefaction of model compounds and biomasses. Energy and Fuels, 30(12), 10470–83. doi: 10.1021/acs.energyfuels.6b02007.Google Scholar
Mäkelä, M., Benavente, V., and Fullana, A. (2015a). Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Applied Energy, 155, 576–84. doi: 10.1016/j.apenergy.2015.06.022.Google Scholar
Mäkelä, M., Benavente, V., and Fullana, A. (2015b). Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Applied Energy, 155, 576–84. doi: 10.1016/j.apenergy.2015.06.022.Google Scholar
Malico, I., Pereira, R. N., Gonçalves, A. C. and Sousa, A. M. (2019). Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 112, 960–77. doi: 10.1016/j.rser.2019.06.022.Google Scholar
Mani, T., Murugan, P., Abedi, J., and Mahinpey, N. (2010). Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering Research and Design, 88(8), 952–58. doi: 10.1016/j.cherd.2010.02.008.CrossRefGoogle Scholar
Marciano, J. A., Lilieholm, R. J., Teisl, M. F., Leahy, J. E., and Neupane, B. (2014). Factors affecting public support for forest-based biorefineries: A comparison of mill towns and the general public in Maine, USA. Energy Policy, 75, 301–11. doi: 10.1016/j.enpol.2014.08.016.Google Scholar
Martín-Gamboa, M., Marques, P., Freire, F., Arroja, L. and Dias, A. C. (2020). Life cycle assessment of biomass pellets: A review of methodological choices and results. Renewable and Sustainable Energy Reviews, 133, 110278. doi: 10.1016/j.rser.2020.110278.Google Scholar
Merzari, F., Goldfarb, J., Andreottola, G., Mimmo, T., Volpe, M., and Fiori, L. (2020). Hydrothermal carbonization as a strategy for sewage sludge management: Influence of process withdrawal point on hydrochar properties. Energies, 13(11), 2890. doi: 10.3390/en13112890.Google Scholar
Mihajlović, M., Petrović, J., Maletić, S., Isakovski, M. K., Stojanović, M., Lopičić, Z., and Trifunović, S. (2018). Hydrothermal carbonization of Miscanthus × giganteus: Structural and fuel properties of hydrochars and organic profile with the ecotoxicological assessment of the liquid phase. Energy Conversion and Management, 159, 254–63. doi: 10.1016/j.enconman.2018.01.003.Google Scholar
Mishra, R. K. and Mohanty, K. (2018). An overview of techno-economic analysis and life-cycle assessment of thermochemical conversion of lignocellulosic biomass, in Recent advancements in biofuels and bioenergy utilization. Springer, 363402. doi: 10.1007/978-981-13-1307-3_15.Google Scholar
Monte, M. C., Fuente, E., Blanco, A., and Negro, C. (2009). Waste management from pulp and paper production in the European Union. Waste Management, 29(1), 293308. doi: 10.1016/j.wasman.2008.02.002.Google Scholar
Mourant, D., Wang, Z., He, M., Wang, X. S., Garcia-Perez, M., Ling, K., and Li, C. Z. (2011). Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel, 90(9), 2915–22. doi: 10.1016/j.fuel.2011.04.033.Google Scholar
Mulcahy, D. and Newes, E. (2013). International Trade of Wood Pellets Energy Analysis. www.nrel.gov/docs/fy13osti/56791.pdfGoogle Scholar
Nakatsuka, N., Kishita, Y., Kurafuchi, T., and Akamatsu, F. (2020). Integrating wastewater treatment and incineration plants for energy-efficient urban biomass utilization: A life cycle analysis. Journal of Cleaner Production, 243. doi: 10.1016/j.jclepro.2019.118448.Google Scholar
Namkung, H., Park, J. H. Lee, Y. J., Song, G. S., Choi, J. W., Park, S. J. Kim, S., Liu, J., and Choi, Y. C. (2021). Performance evaluation of biomass pretreated by demineralization and torrefaction for ash deposition and PM emissions in the combustion experiments. Fuel, 292, 120379. doi: 10.1016/j.fuel.2021.120379.Google Scholar
NETL (2019). Biomass and Municipal Solid Waste (MSW) Gasification. Available at: www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/biomass-msw (Accessed: May 31, 2021).Google Scholar
Neves, D., Thunman, H., Matos, A., Tarelho, L., and Gómez-Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science, 37(5), 611–30. doi: 10.1016/j.pecs.2011.01.001.Google Scholar
Oasmaa, A. et al. (2003). Fast pyrolysis of forestry residue. 1. Effect of extractives on phase separation of pyrolysis liquids. Energy and Fuels, 17(1), 112. doi: 10.1021/ef020088x.Google Scholar
Oh, S. Y. and Yoon, Y. M. (2017). Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization. Energies, 10(11), 1876. doi: 10.3390/en10111876.CrossRefGoogle Scholar
Onay, O. and Kockar, O. M. (2003). Slow, fast and flash pyrolysis of rapeseed. Renewable Energy, 28(15), 2417–33. doi: 10.1016/S0960-1481(03)00137-X.Google Scholar
Oudenhoven, S. R. G., Westerhof, R. J. M., Aldenkamp, N., Brilman, D. W. F., and Kersten, S. R. (2013). Demineralization of wood using wood-derived acid: Towards a selective pyrolysis process for fuel and chemicals production. Journal of Analytical and Applied Pyrolysis, 103 112–8. doi: 10.1016/j.jaap.2012.10.002.Google Scholar
Park, J., Lee, Y., Ryu, C., and Park, Y. K. (2014). Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresource Technology, 155, 6370. doi: 10.1016/j.biortech.2013.12.084.Google Scholar
Patnaik, A. S. and Goldfarb, J. L. (2016). Continuous activation energy representation of the Arrhenius equation for the pyrolysis of cellulosic materials: Feed corn stover and cocoa shell biomass. Cellulose Chemistry and Technology, 50(2), 311320.Google Scholar
Pearce, R. B. (1999). Forest products biotechnology. Journal of Chemical Technology & Biotechnology, 74(5), 473–74. doi: 10.1002/(sici)1097-4660(199905)74:5<473::aid-jctb55>3.3.co;2-w.Google Scholar
Peng, C., Zhai, Y., Zhu, Y., Xu, B., Wang, T., Li, C., and Zeng, G. (2016). Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel, 176, 110–8. doi: 10.1016/j.fuel.2016.02.068.Google Scholar
Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., and Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38(1), 399408. doi: 10.1016/j.wasman.2014.12.004.Google Scholar
Pollard, Z. A. and Goldfarb, J. L. (2021). Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality. Environmental Pollution, 270, 116073. doi: 10.1016/j.envpol.2020.116073.Google Scholar
Pulka, J., Manczarski, P., Koziel, J. A., and Białowiec, A. (2019). Torrefaction of sewage sludge: Kinetics and fuel properties of biochars. Energies, 12(3), 565. doi: 10.3390/en12030565.Google Scholar
Ramos-Suárez, J. L., Ritter, A., González, J. M., and Pérez, A. C. (2019). Biogas from animal manure: A sustainable energy opportunity in the Canary Islands. Renewable and Sustainable Energy Reviews, 104, 137–50. doi: 10.1016/j.rser.2019.01.025.Google Scholar
Raveendran, K., Ganesh, A., and Khilar, K. C. (1996). Pyrolysis characteristics of biomass and biomass components. Fuel, 75(8), 987–98. doi: 10.1016/0016-2361(96)00030-0.Google Scholar
Reichel, D., Klinger, M., Krzack, S., and Meyer, B. (2013). Effect of ash components on devolatilization behavior of coal in comparison with biomass – product yields, composition, and heating values. Fuel, 114, 6470. doi: 10.1016/j.fuel.2013.01.045.Google Scholar
Reza, M. T., Emerson, R., Uddin, M. H., Gresham, G., and Coronella, C. J. (2015). Ash reduction of corn stover by mild hydrothermal preprocessing. Biomass Conversion and Biorefinery, 5(1), 2131. doi: 10.1007/s13399-014-0122-x.Google Scholar
Riaza, J., Mason, P. E., Jones, J. M., Williams, A., Gibbins, J., and Chalmers, H. (2020). Shape and size transformations of biomass particles during combustion. Fuel, 261, 116334. doi: 10.1016/j.fuel.2019.116334.Google Scholar
Rodrigues, A., Loureiro, L., and Nunes, L. J. R. (2018). Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: Properties of torrefied products. Biomass and Bioenergy, 108, 5565. doi: 10.1016/j.biombioe.2017.11.005.Google Scholar
Sabio, E., Álvarez-Murillo, A., Román, S., and Ledesma, B. (2016). Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Management, 47, 122–32. doi: 10.1016/j.wasman.2015.04.016.Google Scholar
Sahoo, K., Kumar, A., and Chakraborty, J. P. (2021). A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 23(1), 186204. doi: 10.1007/s10163-020-01114-2.Google Scholar
Schmid, D., Karlström, O., and Yrjas, P. (2020). Release of NH3, HCN and NO during devolatilization and combustion of washed and torrefied biomass. Fuel, 280, 118583. doi: 10.1016/j.fuel.2020.118583.Google Scholar
Schoo, B. et al. (2017). Drought tolerance and water-use efficiency of biogas crops: A comparison of cup plant, maize and lucerne-grass. Journal of Agronomy and Crop Science, 203(2), 117–30. doi: 10.1111/jac.12173.CrossRefGoogle Scholar
Scott, D. S., Legge, R. L., Piskorz, J., Majerski, P., and Radlein, D. (1997). Fast pyrolysis of biomass for recovery of specialty chemicals, in Developments in thermochemical biomass conversion. Springer Netherlands, 523–35. doi: 10.1007/978-94-009-1559-6_41.Google Scholar
Scott, D. S., Plskorz, J., and Radleln, D. (1985). Liquid products from the continuous flash pyrolysis of biomass. Industrial and Engineering Chemistry Process Design and Development, 24(3), 581–88. doi: 10.1021/i200030a011.Google Scholar
Shankar Tumuluru, J., Sokhansanj, S., Hess, J. R., Wright, C. T., and Boardman, R. D. (2011). A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 384401. doi: 10.1089/ind.2011.7.384.Google Scholar
Shuping, Z., Yulong, W., Mingde, Y., Chun, L., and Junmao, T. (2010). Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 101(1), 359–65. doi: 10.1016/j.biortech.2009.08.020.Google Scholar
Si, B., Yang, L., Zhou, X., Watson, J., Tommaso, G., Chen, W. T., Liao, Q., Duan, N., Liu, Z., and Zhang, Y. (2019). Anaerobic conversion of the hydrothermal liquefaction aqueous phase: Fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chemistry, 21(6), 1305–18. doi: 10.1039/c8gc02907e.Google Scholar
Slopiecka, K., Bartocci, P., and Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97, 491–7. doi: 10.1016/j.apenergy.2011.12.056.Google Scholar
Smeets, E. M., Faaij, A. P., Lewandowski, I. M., and Turkenburg, W. C. (2007). A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 56106. doi: 10.1016/j.pecs.2006.08.001.Google Scholar
Sofia, D., Giuliano, A., Poletto, M. and Barletta, D. (2015). Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO2 capture based on membrane technology. Computer Aided Chemical Engineering, 1373–78. doi: 10.1016/B978-0-444-63577-8.50074-7.Google Scholar
Söyler, N., Goldfarb, J. L., Ceylan, S., and Saçan, M. T. (2017). Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae. Energy, 120, 907–14. doi: 10.1016/j.energy.2016.11.146.Google Scholar
Sun, S., Tian, H., Zhao, Y., Sun, R., and Zhou, H. (2010). Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresource Technology, 101(10), 3678–84. doi: 10.1016/j.biortech.2009.12.092.Google Scholar
Sundar Rajan, P., Gopinath, K. P., Arun, J., Grace Pavithra, K., Joseph, A. A. and Manasa, S., (2021). Insights into valuing the aqueous phase derived from hydrothermal liquefaction. Renewable and Sustainable Energy Reviews, 144, 111019. doi: 10.1016/j.rser.2021.111019.Google Scholar
Suss, A. (1988). Klärschlamm-Nutzen oder Gefahr für die Landwirtschaft [Sewage sludge – useful or dangerous for agriculture], Entsorgungspraxis, 159–67. Available at: www.osti.gov/etdeweb/servlets/purl/592154 (Accessed: June 5, 2021).Google Scholar
Szufa, S., Adrian, Ł., Piersa, P., Romanowska-Duda, Z., Grzesik, M., Cebula, A., and Kowalczyk, S. (2018). Experimental studies on energy crops torrefaction process using batch reactor to estimate torrefaction temperature and residence time. Renewable energy sources: Engineering, technology, innovation. Mudryk, K. and Werle, S. (eds), Springer, 365–73. doi: 10.1007/978-3-319-72371-6_35.Google Scholar
Tabish, A. N., Kazmi, M., Hussain, M. A., Farhat, I., Irfan, M., Zeb, H., Rafique, U., Ali, H., Saddiqi, M. H., and Akram, M. S. (2021). Biomass waste valorization by acidic and basic leaching process for thermochemical applications. Waste and Biomass Valorization, 12, 111. doi: 10.1007/s12649-021-01420-2.Google Scholar
Taherymoosavi, S., Joseph, S., Pace, B. and Munroe, P. (2018). A comparison between the characteristics of single- and mixed-feedstock biochars generated from wheat straw and basalt. Journal of Analytical and Applied Pyrolysis, 129, 123–33. doi: 10.1016/j.jaap.2017.11.020.CrossRefGoogle Scholar
Tahir, M. H., Çakman, G., Goldfarb, J. L., Topcu, Y., Naqvi, S. R., and Ceylan, S. (2019). Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresource Technology, 279, 6773 doi: 10.1016/j.biortech.2019.01.106.Google Scholar
Turn, S. Q., Kinoshita, C. M., Ishimura, D. M., Hiraki, T. T., Zhou, J., and Masutani, S. M. (2001). An experimental investigation of alkali removal from biomass producer gas using a fixed bed of solid sorbent. Industrial and Engineering Chemistry Research, 40(8), 1960–67. doi: 10.1021/ie000749i.Google Scholar
Tyndall, J. C., Berg, E. J., and Colletti, J. P. (2011). Corn stover as a biofuel feedstock in Iowa’s bio-economy: An Iowa farmer survey. Biomass and Bioenergy, 35(4), 1485–95. doi: 10.1016/j.biombioe.2010.08.049.Google Scholar
Ulbrich, M., Preßl, D., Fendt, S., Gaderer, M., and Spliethoff, H. (2017). Impact of HTC reaction conditions on the hydrochar properties and CO2 gasification properties of spent grains. Fuel Processing Technology, 167(July), 663–9. doi: 10.1016/j.fuproc.2017.08.010.Google Scholar
United Nations (2018). Goal 14 – United Nations Partnerships for SDGs platform | United Nations. Available at: https://sustainabledevelopment.un.org/partnership/?p=573 (Accessed: October 3, 2018).Google Scholar
US Energy Information Administration (EIA) (2021). Monthly Densified Biomass Fuel Report, Colorado State Profile and Energy Estimates. Available at: www.eia.gov/biofuels/biomass/ (Accessed: May 31, 2021).Google Scholar
Valmet (2018). Hydrothermal carbonization. Available at: www.valmet.com/more-industries/bio/hyrdrothermal-carbonization/ (Accessed: June 3, 2018).Google Scholar
Voinov, A. (2017). Encyclopedia of sustainable technologies | ScienceDirect.Google Scholar
Volpe, R., Volpe, M., Fiori, L., and Messineo, A. (2016). Upgrading of olive tree trimmings residue as biofuel by hydrothermal carbonization and torrefaction: A comparative study. Chemical Engineering Transactions, 50, 13–8. doi: 10.3303/CET1650003.Google Scholar
Volpe, M. and Fiori, L. (2017). From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties. Journal of Analytical and Applied Pyrolysis, 124, 6372. doi: 10.1016/j.jaap.2017.02.022.Google Scholar
Vyas, A., Chellappa, T., and Goldfarb, J. L. (2017). Porosity development and reactivity changes of coal–biomass blends during co-pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis, 124, 7988. doi: 10.1016/j.jaap.2017.02.018.Google Scholar
Wang, L., Hustad, J. E., Skreiberg, Ø., Skjevrak, G., and Grønli, M. (2012). A critical review on additives to reduce ash related operation problems in biomass combustion applications. in Energy Procedia, 20–9. doi: 10.1016/j.egypro.2012.03.004.Google Scholar
Wang, X., Chang, V. W. C., Li, Z., Chen, Z., and Wang, Y. (2021). Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals. Journal of Hazardous Materials, 412. doi: 10.1016/j.jhazmat.2021.125200.Google Scholar
Watson, J., Wang, T., Si, B., Chen, W. T., Aierzhati, A., and Zhang, Y. (2020). Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Progress in Energy and Combustion Science, 77, 100819. doi: 10.1016/j.pecs.2019.100819.Google Scholar
Wegener, D. T. and Kelly, J. R. (2008). Social psychological dimensions of bioenergy development and public acceptance. BioEnergy Research, 1(2), 107–17. doi: 10.1007/s12155-008-9012-z.Google Scholar
Werther, J. and Ogada, T. (1999). Sewage sludge combustion. Progress in Energy and Combustion Science, 25(1), 55116. doi: 10.1016/S0360-1285(98)00020-3.Google Scholar
Wever, C., Höller, M., Becker, L., Biertümpfel, A., Köhler, J., van Inghelandt, D., Westhoff, P., Pude, R., and Pestsova, E. (2019). Towards high-biomass yielding bioenergy crop Silphium perfoliatum L.: Phenotypic and genotypic evaluation of five cultivated populations. Biomass and Bioenergy, 124, 102–13. doi: 10.1016/j.biombioe.2019.03.016.Google Scholar
van Wijnen, J., Ivens, W. P., Kroeze, C., and Löhr, A. J. (2015). Coastal eutrophication in Europe caused by production of energy crops. Science of the Total Environment, 511, 101–11. doi: 10.1016/j.scitotenv.2014.12.032.Google Scholar
Wikberg, H., Ohra-Aho, T., Honkanen, M., Kanerva, H., Harlin, A., Vippola, M., and Laine, C. (2016). Hydrothermal carbonization of pulp mill streams. Bioresource Technology, 212, 236–44. doi: 10.1016/j.biortech.2016.04.061.Google Scholar
Wirth, B., Reza, T., and Mumme, J. (2015). Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge. Bioresource Technology, 198, 215–22. doi: 10.1016/j.biortech.2015.09.022.Google Scholar
Xue, J., Chellappa, T., Ceylan, S., and Goldfarb, J. L. (2018). Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal. Renewable Energy, 122, 152–62. doi: 10.1016/j.renene.2018.01.066.Google Scholar
Yadav, M., Paritosh, K., Chawade, A., Pareek, N., and Vivekanand, V. (2018). Genetic engineering of energy crops to reduce recalcitrance and enhance biomass digestibility. Agriculture (Switzerland), 8(6), 76 doi: 10.3390/agriculture8060076.Google Scholar
Yu, C., Thy, P., Wang, L., Anderson, S. N., VanderGheynst, J. S., Upadhyaya, S. K. and Jenkins, B. M. (2014). Influence of leaching pretreatment on fuel properties of biomass. Fuel Processing Technology, 128, 4353. doi: 10.1016/j.fuproc.2014.06.030.Google Scholar
Zang, G., Zhang, J., Jia, J., Lora, E. S., and Ratner, A. (2020). Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles. Renewable Energy, 149, 336–46. doi: 10.1016/j.renene.2019.12.013.Google Scholar
Zanzi Vigouroux, R., Tito Ferro, D., Torres, A., Beaton Soler, P., and Bjornbom, E. (2004). Biomass Torrefaction. 2nd World Conf. on Biomass for Energy, Industry and Climate Protection, 1014 May 2004, Rome, Italy. Rome, 85962. Available at: www.diva-portal.org/smash/record.jsf?pid=diva2:488652&dswid=-3176.Google Scholar
Zhang, H., Shao, S., Ryabov, G., Jiang, Y., and Xiao, R. (2017). Functional group in situ evolution principles of produced solid and product distribution in biomass torrefaction process. Energy and Fuels, 31(12), 13639–46. doi: 10.1021/acs.energyfuels.7b01642.Google Scholar
Zhang, S., Hu, B., Zhang, L., and Xiong, Y. (2016). Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. Journal of Analytical and Applied Pyrolysis, 119, 217–23. doi: 10.1016/j.jaap.2016.03.002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×