Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:37:35.360Z Has data issue: false hasContentIssue false

27 - Mössbauer Spectroscopy at Gusev Crater and Meridiani Planum

Iron Mineralogy, Oxidation State, and Alteration on Mars

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Mössbauer instruments were included on the Mars Exploration Rover (MER) Mission to determine the mineralogic composition, diversity, and oxidation state of Fe-bearing igneous materials and alteration products. A total of 16 Fe-bearing phases (consistent with bulk-sample chemistry) were identified, including Fe associated with rock-forming minerals (olivine, pyroxene, magnetite, ilmenite, and chromite), Fe3+-bearing oxyhydroxides (nanophase ferric oxide, hematite, and goethite), sulfates (jarosite and an unassigned Fe3+ sulfate phase), and Fe2+ carbonate. Igneous rock types ranged from basalts to ultramafic rocks at Gusev crater. Jarosite-hematite bedrock was pervasive at Meridiani Planum, and concretions winnowed from the outcrop were mineralogically hematite. Because their structures contain hydroxyl, goethite, and jarosite provide mineralogic evidence for aqueous processes on Mars, and jarosite and Fe3+ sulfate are evidence for acid-sulfate processes at both Gusev crater and Meridiani Planum. A population of rocks on the Meridiani Planum outcrop was identified as iron and stony meteorites by the presence of Fe metal (kamacite) and the sulfide troilite. The MER mission demonstrates that Mössbauer spectrometers landed on any Fe-bearing planetary surface provide first-order information on igneous provinces, alteration state, and alteration style and provide well-constrained criteria for sample selection on planetary sample-return missions including planets, moons, and asteroids.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 538 - 554
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R.E., Squyres, S.W., Anderson, R.C., et al. (2006) Overview of the spirit Mars Exploration Rover mission to Gusev crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 111, E02S01, DOI:10.1029/2005JE002499.Google Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S33, DOI:10.1029/2008JE003183.Google Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 115, E00F15, DOI:10.1029/2010JE003746.Google Scholar
Arvidson, R.E., Ashley, J.W., Bell, J.F., et al. (2011) Opportunity Mars rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 116, E00F15, DOI:10.1029/2010JE003746.Google Scholar
Ashley, J.W., Golombek, M., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, E00F20, DOI:10.1029/2010JE003672.CrossRefGoogle Scholar
Bancroft, G.M. (1973) Mössbauer spectroscopy: An introduction for inorganic chemists and geochemists. McGraw-Hill, New York.Google Scholar
Burns, R.G. (1993) Mössbauer spectral characterization of iron in planetary surface materials. Cambridge University Press, Cambridge, 539556.Google Scholar
Burns, R.G. & Solberg, T.C. (1990) 57Fe-bearing oxide, silicate, and aluminosilicate minerals, crystal structure trends in Mössbauer spectra. In: Spectroscopic characterization of minerals and their surfaces (Coyne, L.M., McKeever, S.W.S., & Blake, D.F., eds.). American Chemical Society, Washington, DC, 262283.Google Scholar
Clark, B.C., Morris, R., McLennan, S., et al. (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth and Planetary Science Letters, 240, 7394.Google Scholar
Clark, B.C., Arvidson, R.E., Gellert, R., et al. (2007) Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. Journal of Geophysical Research, 112, E06S01, DOI:10.1029/2006JE002756.Google Scholar
De Grave, E. & Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337342.Google Scholar
Dyar, M.D., Breves, E., Jawin, E., et al. (2013) Mössbauer parameters of iron in sulfate minerals. American Mineralogist, 98, 19431965.Google Scholar
Dyar, M.D., Jawin, E.R., Breves, E., et al. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99, 914942.Google Scholar
Fleischer, I., Klingelhoefer, G., Schröder, C., et al. (2008) Depth selective Mössbauer spectroscopy: Analysis and simulation of 6.4 keV and 14.4 keV spectra obtained from rocks at Gusev crater, Mars, and layered laboratory samples. Journal of Geophysical Research, 113, E06S21, DOI:10.1029/2007JE003022.CrossRefGoogle Scholar
Fleischer, I., Agresti, D., Klingelhöfer, G., & Morris, R. (2010a) Distinct hematite populations from simultaneous fitting of Mössbauer spectra from Meridiani Planum, Mars. Journal of Geophysical Research, 115, E00F06,Google Scholar
DOIg: 10.1029/2010JE003622.Google Scholar
Fleischer, I., Brueckner, J., Schröder, C., et al. (2010b) Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 115, E00F05, DOI:10.1029/2010JE003621.Google Scholar
Fleischer, I., Schroeder, C., Klingelhoefer, G., et al. (2011) New insights into the mineralogy and weathering of the Meridiani Planum meteorite, Mars. Meteoritics and Planetary Science, 46, 2134.Google Scholar
Graff, T., Morris, R., & Christensen, P. (2001) Effects of palagonitic dust coatings on thermal emission spectra of rocks and minerals: Implications for mineralogical characterization of the martian surface by MGS-TES. 32nd Lunar Planet. Sci. Conf., Abstract #1899.Google Scholar
Gütlich, P. & Schröder, C. (2012) Mössbauer spectroscopy. In: Methods in physical chemistry (Schäfer, R & Schmidt, P.C., eds.). Wiley-VCH, Weinheim, Germany, 351389.Google Scholar
Gütlich, P., Bill, E., & Trautwein, A.X. (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin and Heidelberg.Google Scholar
Hausrath, E., Golden, D., Morris, R., Agresti, D., & Ming, D. (2013) Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate‐rich Paso Robles soil at Gusev crater, Mars. Journal of Geophysical Research, 118, 113.Google Scholar
Hawthorne, F.C. (1988) Mössbauer spectroscopy. Mineralogical Society of America, 255340.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2003) Athena MIMOS II Mössbauer spectrometer investigation. Journal of Geophysical Research, 108, 8067, DOI:10.1029/2003JE002138.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science, 306, 17401745.CrossRefGoogle ScholarPubMed
Klingelhöfer, G., DeGrave, E., Morris, R.V., et al. (2005) Mössbauer spectroscopy on Mars: Goethite in the Columbia Hills at Gusev crater. Hyperfine Interactions, 166, 549554.Google Scholar
Lane, M.D., Dyar, M.D., & Bishop, J.L. (2004) Spectroscopic evidence for hydrous iron sulfate in the martian soil. Geophysical Research Letters, 31, L19702, DOI:10.1029/2004GL021231.CrossRefGoogle Scholar
Lane, M.D., Bishop, J.L., Darby Dyar, M., King, P.L., Parente, M., & Hyde, B.C. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728739.Google Scholar
McCammon, C. (1995) Mössbauer spectroscopy of minerals. In: Mineral physics and crystallography: A handbook of physical constants (Ahrens, T.J., ed.). American Geophysical Union, Washington, DC, 332347.Google Scholar
McSween, H.Y., Ruff, S.W., Morris, R.V., et al. (2008) Mineralogy of volcanic rocks in Gusev crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. Journal of Geophysical Research, 113, E06S04, DOI:10.1029/2007JE002970.Google Scholar
Morris, R.V. & Klingelhöfer, G. (2008) Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers. In: The martian surface (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 339365.Google Scholar
Morris, R.V., Golden, D., Bell, J.F. III, & Lauer, H. Jr. (1995) Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada. Journal of Geophysical Research, 100, 53195328.Google Scholar
Morris, R.V., Golden, D., Ming, D., et al. (2001a) Phyllosilicate‐poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic martian dust? Journal of Geophysical Research, 106, 50575083.Google Scholar
Morris, R.V., Graff, T., Shelfer, T., & Bell, J. III (2001b) Effects of palagonitic dust coatings on visible, near-IR, and Mössbauer spectra of rocks and minerals: Implication for mineralogical remote sensing of Mars. 32nd Lunar Planet. Sci. Conf., Abstract #1912.Google Scholar
Morris, R.V., Klingelhöfer, G., Bernhardt, B., et al. (2004) Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833836.CrossRefGoogle ScholarPubMed
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006a) Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research, 111, E02S13, DOI:10.1029/2005JE002584.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006b) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research, 111, E12S15, DOI:10.1029/2006JE002791.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, E12S42, DOI:10.1029/2008JE003201.CrossRefGoogle Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 1189667.Google Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed with the Mars Exploration Rovers. Journal of Geophysical Research, 113, E06S22, DOI:10.1029/2007JE002990.Google Scholar
Schröder, C., Herkenhoff, K.E., Farrand, W.H., et al. (2010) Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars. Journal of Geophysical Research, 115, E00F09, DOI:10.1029/2010JE003616.Google Scholar
Schröder, C., Bland, P.A., Golombek, M.P., Ashley, J.W., Warner, N.H., & Grant, J.A. (2016) Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars. Nature Communications, 7, 13459.CrossRefGoogle ScholarPubMed
Stevens, J.G., Khasanov, A.M., Miller, J.W., Pollak, H., & Li, Z. (1998) Mössbauer mineral handbook. Biltmore Press, Ashville, NC.Google Scholar
Squyres, S.W., Arvidson, R.E., Baumgartner, E.T., et al. (2003) The Athena Mars rover science investigation. Journal of Geophysical Research, 108, 8062, DOI:10.1029/2003JE002121.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004a) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306, 16981703.CrossRefGoogle ScholarPubMed
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004b) The Spirit rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Squyres, S.W., Arvidson, R.E., Bollen, D., et al. (2006) Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002771.CrossRefGoogle Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.CrossRefGoogle ScholarPubMed
Squyres, S.W., Knoll, A.H., Arvidson, R.E., et al. (2009) Exploration of Victoria crater by the Mars rover Opportunity. Science, 324, 10581061.Google Scholar
Yen, A.S., Gellert, R., Schröder, C., et al. (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature, 436, 4954.Google Scholar
Yen, A.S., Morris, R.V., Clark, B.C., et al. (2008) Hydrothermal processes at Gusev crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 113, E06S10, DOI:10.1029/2007JE002978.Google Scholar
Yoshida, Y. & Langouche, G. (2013) Mössbauer spectroscopy. Springer, Berlin.CrossRefGoogle Scholar
Zipfel, J., Schröder, C., Jolliff, B.L., et al. (2011) Bounce Rock: A shergottite-like basalt encountered at Meridiani Planum, Mars. Meteoritics and Planetary Science, 46, 120.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×