Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-7wx25 Total loading time: 0 Render date: 2025-12-25T20:47:47.628Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 December 2025

Robert Hundt
Affiliation:
Google
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Aaronson, S. Read the fine print. Nature Physics, 11, 291293, 2015. doi: http://doi.org/10.1038/nphys3272.CrossRefGoogle Scholar
Aaronson, S. and Gottesman, D.. Improved simulation of stabilizer circuits. Physical Review A, 70(5), 2004. doi: 10.1103/physreva.70.052328.CrossRefGoogle Scholar
Abhijith, J., Adetokunbo, A., Ambrosiano, J., et al. Quantum algorithm implementations for beginners, 2020. arXiv:1804.03719v2 [cs.ET].Google Scholar
Acín, A., Andrianov, A., Costa, L., Jané, E., Latorre, J. I., and Tarrach, R. Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States. Physical Review Letters, 85(7) 15601563, 2000. doi: 10.1103/PhysRevLett.85.1560.CrossRefGoogle ScholarPubMed
Altenkirch, T. and Green, A.. The quantum IO monad. Semantic Techniques in Quantum Computation, 2013. doi: 10.1017/CBO9781139193313.006.CrossRefGoogle Scholar
Altman, E., Brown, K. R., Carleo, G., et al. Quantum simulators: Architectures and opportunities. PRX Quantum, 2(1), 2021. doi: 10.1103/prxquantum.2.017003.CrossRefGoogle Scholar
Anders, S. and Briegel, H. J.. Fast simulation of stabilizer circuits using a graph-state representation. Physical Review A, 73(2), 2006. doi: 10.1103/physreva.73.022334.CrossRefGoogle Scholar
Anferov, A., Harvey, S. P., Wan, F., Simon, J., and Schuster, D.. Superconducting qubits above 20 GHz operating over 200 mK. arxiv.org/abs/2402.03031.Google Scholar
Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J.. The Traveling Salesman Problem: A Computational Study. Princeton University Press, 2006.Google Scholar
Arute, F., Arya, K., Babbush, R., et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505510, 2019. doi: 10.1038/s41586-019-1666-5.CrossRefGoogle ScholarPubMed
Arute, F., Arya, K., Babbush, R, et al. Supplementary information: Quantum supremacy using a programmable superconducting processor. Nature, 574:505510, 2019. http://arxiv.org/pdf/1910.11333.10.1038/s41586-019-1666-5CrossRefGoogle Scholar
Barenco, A., Bennett, C. H., Cleve, R., et al. Elementary gates for quantum computation. Physical Review A, 52(5):34573467, 1995. doi: 10.1103/physreva.52.3457.CrossRefGoogle ScholarPubMed
Basheer, A., Afham, A., and Goyal, S. K.. Quantum k-nearest neighbors algorithm. Quantum Information Processing, Springer, 21(18), 2022. arxiv.org/abs/2003.09187.Google Scholar
Beauregard, S. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Information and Compututation, 3(2):175185, 2003.10.26421/QIC3.2-8CrossRefGoogle Scholar
Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1:195200, 1964. doi: 10.1103/PhysicsPhysiqueFizika.1.195.CrossRefGoogle Scholar
Bennett, C. H. Logical reversibility of computation. IBM Journal of Research and Development, 17(6):525532, 1973. doi: 10.1147/rd.176.0525.CrossRefGoogle Scholar
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K.. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Physical Review Letters, 70:18951899, 1993. doi: 10.1103/PhysRevLett.70.1895.CrossRefGoogle ScholarPubMed
Bennett, C. H. and Wiesner, S. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20): 28812884, 1992. doi: :10.1103/PhysRevLett.69.2881.CrossRefGoogle ScholarPubMed
Bernstein, E. and Vazirani, U. Quantum complexity theory. SIAM Journal on Computing, 26(5): 14111473, 1993. doi: 10.1137/S0097539796300921.CrossRefGoogle Scholar
Berry, D. W. and Sanders, B. C.. Quantum teleportation and entanglement swapping for systems of arbitrary spin. Published under licence by IOP Publishing Ltd. New Journal of Physics, 4, 2002. doi: 10.1088/1367-2630/4/1/308.Google Scholar
rut, A., Petrosyan, A., and Ciliberto, S.. Information and thermodynamics: Experimental verification of Landauer’s Erasure principle. Journal of Statistical Mechanics: Theory and Experiment, 6:17425468, 2015. doi: 10.1088/1742-5468/2015/06/p06015.Google Scholar
Bettelli, S., Calarco, T., and Serafini, L.. Toward an architecture for quantum programming. The European Physical Journal D – Atomic, Molecular and Optical Physics, 25(2):181200, 2003. doi: 10.1140/epjd/e2003-00242-2.Google Scholar
Bichsel, B., Baader, M., Gehr, T., and Vechev, M. T.. Silq: A high-level quantum language with safe uncomputation and intuitive semantics. In Donaldson, A. F. and Torlak, E., eds., Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15–20, 2020, pp. 286300. ACM, 2020. doi: 10.1145/3385412.3386007.Google Scholar
Bochkin, G. A., Doronin, S. I., Feldman, E. B., and Zenchuk, A. I.. Calculation of π on the IBM quantum computer and the accuracy of one-qubit operations. Quantum Information Processing 19(8):257, 2020. doi: 10.1007/s11128-020-02759-6.CrossRefGoogle Scholar
Boixo, S., Isakov, S. V., Smelyanskiy, V. N., et al. Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595600, 2018. doi: 10.1038/s41567-018-0124-x.CrossRefGoogle Scholar
Brassard, G., Dupuis, F., Gambs, S., and Tapp, A.. An optimal quantum algorithm to approximate the mean and its application for approximating the median of a set of points over an arbitrary distance. arXiv, 2011. doi: http://doi.org/10.48550/arXiv.1106.4267.CrossRefGoogle Scholar
Brassard, G., Høyer, P., Mosca, M., and Tapp, A.. Quantum amplitude amplification and estimation. Quantum Computation and Information, pp. 5374, 2002. doi: 10.1090/conm/305/05215.CrossRefGoogle Scholar
Briggs, P. Register via Graph Coloring. PhD thesis, 1992. www.cs.utexas.edu/~mckinley/380C/lecs/briggs-thesis-1992.pdf.Google Scholar
Buck, I., Foley, T., Horn, D., et al. Brook for GPUs: Stream computing on graphics hardware. ACM Transactions on Graphics, 23:777786, 2004. doi: 10.1145/1186562.1015800.CrossRefGoogle Scholar
Buhrman, H., Cleve, R., Watrous, J., and de Wolf, R.. Quantum fingerprinting. Physical Review Letters, 87(16):167902167905, 2001. doi: 10.1103/physrevlett.87.167902.CrossRefGoogle ScholarPubMed
Buhrman, H., Dürr, C., Heiligman, M., et al. Quantum algorithms for element distinctness. SIAM Journal on Computing, 34(6):13241330, 2005. doi: 10.1137/s0097539702402780.CrossRefGoogle Scholar
Burke, P. G. and John Stewart Bell, I. C. Percival. 28 July 1928–1 October 1990: Elected F.R.S. 1972, Biographical Memoirs of Fellows of the Royal Society: Vol. 45, pp. 117, Nov. 1999. doi: http://doi.org/10.1098/rsbm.1999.0001.CrossRefGoogle Scholar
Butscher, B. and Weimer, H.. libquantum. www.libquantum.de/, 2013. Accessed: February 10, 2021.Google Scholar
Carlson, C., Jorquera, Z., Kolla, A., and Kordonowy, S.. A quantum advantage over classical for local max cut. doi: arxiv.org/abs/2304.08420.Google Scholar
Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., and Spielman, D. A.. Exponential algorithmic speedup by a quantum walk. Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing – STOC ’03, 2003. doi: 10.1145/780542.780552.CrossRefGoogle Scholar
Childs, A. M., Cleve, R., Jordan, S. P., and Yonge-Mallo, D.. Discrete-query quantum algorithm for nand trees. Theory of Computing, 5(1):119123, 2009. doi: 10.4086/toc.2009.v005a005.CrossRefGoogle Scholar
Chong, F. T., Franklin, D., and Martonosi, M.. Programming languages and compiler design for realistic quantum hardware. Nature, 549(7671):180187, 2017. doi: 10.1038/nature23459.CrossRefGoogle ScholarPubMed
Clauser, John F., Horne, Michael A., Shimony, Abner, and Holt, Richard A.. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15):880884, 1969. doi: 10.1103/PhysRevLett.23.880.CrossRefGoogle Scholar
Coook, A. The complexity of theorem-proving procedures ACM, STOC ’21 (151–158):8. doi: 10.1145/800157.805047.CrossRefGoogle Scholar
Coppersmith, D. An approximate Fourier transform useful in quantum factoring. arXiv e-prints, art. quant-ph/0201067, Jan. 2002.Google Scholar
Cory, D. G., Price, M. D., Maas, W., et al. Experimental quantum error correction. Physical Review Letters, 81(10):21522155, 1998. doi: 10.1103/physrevlett.81.2152.CrossRefGoogle Scholar
Cross, A. W., Bishop, L. S., Smolin, J. A., and Gambetta, J. M.. Open quantum assembly language, 2017. arXiv:1707.03429.Google Scholar
Cuccaro, S., Draper, T., Kutin, S., and Moulton, D. A new quantum ripple-carry addition circuit, http://arxiv.org/abs/quant-ph/0410184.Google Scholar
Dawson, C. M. and Nielsen, M. A.. The Solovay–Kitaev algorithm. Quantum Information and Computation, 6(1):8195, 2006.CrossRefGoogle Scholar
De Raedt, H., Jin, F., Willsch, D., et al. Massively parallel quantum computer simulator, eleven years later. Computer Physics Communications, 237:4761, 2019. doi: 10.1016/j.cpc.2018.11.005.CrossRefGoogle Scholar
Dean, W. Computational complexity theory. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2016.Google Scholar
Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Series A, 400(1818):97117, 1985. doi: 10.1098/rspa.1985.0070.Google Scholar
Deutsch, D. and Jozsa, R.. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A, 439(1907):553558, 1992. doi: 10.1098/rspa.1992.0167.Google Scholar
Devitt, S. J., Munro, W. J., and Nemoto, K.. Quantum error correction for beginners. Reports on Progress in Physics, 76(7):076001, 2013. doi: 10.1088/0034-4885/76/7/076001.CrossRefGoogle ScholarPubMed
Ding, Y. and Chong, F. T.. Quantum computer systems: Research for noisy intermediate-scale quantum computers. Synthesis Lectures on Computer Architecture, 15(2):1227, 2020. doi: 10.2200/S01014ED1V01Y202005CAC051.CrossRefGoogle Scholar
Ding, Y., Holmes, A., Javadi-Abhari, A., Franklin, D., Martonosi, M., and Chong, F.. Magicstate functional units: Mapping and scheduling multi-level distillation circuits for faulttolerant quantum architectures. 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018. doi: 10.1109/micro.2018.00072.CrossRefGoogle Scholar
Ding, Y., Wu, X.-C., Holmes, A., Wiseth, A., Franklin, D., Martonosi, M., and Chong, F. T.. Square: Strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020. doi: 10.1109/isca45697.2020.00054.CrossRefGoogle Scholar
Douglas, B. L. and Wang, J. B.. Efficient quantum circuit implementation of quantum walks. Physical Review A, 79:10502947, 2009. doi: 10.1103/PHYSREVA.79.052335.CrossRefGoogle Scholar
Draper, T. G. Addition on a quantum computer. arXiv e-prints, art. quant-ph/0008033, 2000.Google Scholar
Durr, C. and Hoyer, P.. A quantum algorithm for finding the minimum quant-ph/9607014, 1999. arXiv:quant-ph/9607014.Google Scholar
Dür, W., Vidal, G., and Cirac, J. I.. Three qubits can be entangled in two inequivalent ways. Physical Review A, 6, 2000. doi: 10.1103/physreva.62.062314.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N.. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47:777780, 1935. doi: 10.1103/PhysRev.47.777. http://link.aps.org/doi/10.1103/PhysRev.47.777.CrossRefGoogle Scholar
Euler, L. Novi commentarii Academiae Scientiarum Imperialis Petropolitanae. Typis Academiae Scientarum, 8, 1763.Google Scholar
Farhi, E., Goldstone, J., and Gutmann, S.. A quantum approximate optimization algorithm, 2014. http://arxiv.org/abs/1411.4028.Google Scholar
Faye, J. Copenhagen interpretation of quantum mechanics. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2019.Google Scholar
Feynman, R. The Character of Physical Law. MIT Press, 1965.Google Scholar
Feynman, R. Simulating physics with computers. International Journal of Theoretical Physics 21, 467488 (1982). doi: 10.1007/BF02650179.CrossRefGoogle Scholar
Feynman, R., Vernon, F., Frank, L., and Hellwarth, R. Geometrical representation of the Schrödinger equation for solving maser problems. Journal of Applied Physics, 28, 1, 4952, doi: 10.1063/1.1722572.CrossRefGoogle Scholar
Fleisch, D.A. A Student’s Guide to the Schroedinger Equation. Cambridge University Press, 2020.10.1017/9781108876841CrossRefGoogle Scholar
Frank, M. P., Meyer-Baese, U. H., Chiorescu, I., Oniciuc, L., and van Engelen, R. A.. Space-efficient simulation of quantum computers. Proceedings of the 47th Annual Southeast Regional Conference on – ACM-SE 47, 2009. doi: 10.1145/1566445.1566554.CrossRefGoogle Scholar
Fu, P., Kishida, K., Ross, N. J., and Selinger, P.. A tutorial introduction to quantum circuit programming in dependently typed Proto-Quipper, 2020. http://arxiv.org/abs/2005.08396.10.1007/978-3-030-52482-1_9CrossRefGoogle Scholar
Gambetta, J., Rodríguez, D. M., Javadi-Abhari, A., et al. Qiskit/qiskit-terra: Qiskit Terra 0.7.2, 2019. http://doi.org/10.5281/zenodo.2656592.CrossRefGoogle Scholar
Garcia-Escartin, J. C. and Chamorro-Posada, P.. Equivalent quantum circuits, 2011. http://arxiv.org/abs/1110.2998.Google Scholar
Garey, M. and Johnson, D.. Computers and Intractability: A Guide to the Theory of NP-Completeness. Bell Telephone Laboratories, 1979. ISBN: 0716710455.Google Scholar
Garhwal, S., Ghorani, M., and Ahmad, A.. Quantum programming language: A systematic review of research topic and top cited languages. Archives of Computational Methods in Engineering, 28(2):289310, 2021. doi: 10.1007/s11831-019-09372-6.CrossRefGoogle Scholar
Ghirardi, G. and Bassi, A.. Collapse theories. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2020.Google Scholar
Gidney, C. Halving the cost of quantum addition, Quantum, 2:74, 2018. doi: 10.22331/q-2018-06-18-74.CrossRefGoogle Scholar
Gidney, C. Asymptotically Efficient Quantum Karatsuba Multiplication, 2019. arxiv.org/abs/1904.07356.Google Scholar
Gidney, C. Quirk online quantum simulator. http://algassert.com/quirk, 2021a. Accessed: February 10, 2021.Google Scholar
Gidney, C. Breaking down the quantum swap. http://algassert.com/post/1717, 2021b. Accessed: February 10, 2021.Google Scholar
Gokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y., and Chong, F. T.. Optimized quantum compilation for near-term algorithms with OpenPulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 186200, 2020. doi: 10.1109/ MICRO50266.2020.00027.CrossRefGoogle Scholar
Google. Quantum supremacy using a programmable superconducting processor. http://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html, 2019. Accessed: February 10, 2021.Google Scholar
Google. C++ style guide. http://google.github.io/styleguide/cppguide.html, 2021a. Accessed: February 10, 2021.Google Scholar
Google. Python style guide. http://google.github.io/styleguide/pyguide.html, 2021b. Accessed: February 10, 2021.Google Scholar
Google. Cirq. http://cirq.readthedocs.io/en/stable/, 2021c. Accessed: February 10, 2021.Google Scholar
Google. qsim and qsimh. http://quantumai.google/qsim, 2021d. Accessed: February 10, 2021.Google Scholar
Graphviz.org. Graphviz, 2021. Accessed: February 10, 2021.Google Scholar
Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P., and Valiron, B.. Quipper: A scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, p. 333342, Seattle, Washington, USA, 2013. Association for Computing Machinery. doi: 10.1145/2491956.2462177.CrossRefGoogle Scholar
Greenacre, M., Groenen, P. J. F., Hastie, T., et al. Principal component analysis. Nature Reviews Methods Primer 2:100, 2022. doi: 10.1038/s43586-022-00184-w.CrossRefGoogle Scholar
Greenberger, D. M., Horne, M. A., and Zeilinger, A.. Going beyond Bell’s theorem, In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Fundamental Theories of Physics, vol 37. Springer, Dordrecht, 2008. doi: 10.1007/ 978-94-017-0849-4\_10.Google Scholar
Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212219, New York, NY, 1996. Association for Computing Machinery. doi: 10.1145/237814.237866.CrossRefGoogle Scholar
Guerreschi, G. G., Hogaboam, J., Baruffa, F., and Sawaya, N. P. D.. Intel quantum simulator: A cloud-ready high-performance simulator of quantum circuits. Quantum Science and Technology, 5(3):034007, 2020. doi: 10.1088/2058-9565/ab8505.CrossRefGoogle Scholar
ner, T. and Steiger, D. S.. 0.5 petabyte simulation of a 45-qubit quantum circuit. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov 2017. doi: 10.1145/3126908.3126947.CrossRefGoogle Scholar
Haroche, S. and Raimond, J.-M.. Quantum computing: Dream or nightmare? Physics Today, 49:5152, 1996.10.1063/1.881512CrossRefGoogle Scholar
Harrigan, M. P., Sung, K. J., Neeley, M., et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature Physics, 17(3):332336, 2021. doi: 10.1038/s41567-020-01105-y.CrossRefGoogle Scholar
Harrow, A. W., Hassidim, A., and Lloyd, S.. Quantum algorithm for linear systems of equations. Physical Review Letters, 103(15):150502, 2009.10.1103/PhysRevLett.103.150502CrossRefGoogle ScholarPubMed
Harrow, A. W. and Montanaro, A.. Quantum computational supremacy. Nature, 549(7671): 203209, 2017. doi: 10.1038/nature23458.CrossRefGoogle ScholarPubMed
Hundt, R., Mannarswamy, S., and Chakrabarti, D.. Practical structure layout optimization and advice. In International Symposium on Code Generation and Optimization, CGO 2006, 2006. doi: 10.1109/CGO.2006.29.CrossRefGoogle Scholar
IARPA. Quantum Computer Science (QCS) Program Broad Agency Announcement (BAA). http://beta.sam.gov/opp/637e87ac1274d030ce2ab69339ccf93c/view, 2010. Accessed: February 10, 2021.Google Scholar
IBM. IBM Q 16 Rueschlikon V1.x.x. http://github.com/Qiskit/ibmq-device-information/tree/master/backends/rueschlikon/V1, 2021a. Accessed: February 10, 2021.Google Scholar
IBM. Quantum Computation Center. www.ibm.com/blogs/research/2019/09/quantum-computation-center/, 2021b. Accessed: February 10, 2021.Google Scholar
Intel. Intel quantum simulator. http://github.com/iqusoft/intel-qs, 2021. Accessed: February 10, 2021.Google Scholar
Javadi-Abhari, A., Patil, S., Kudrow, D., et al. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers, CF ’14, New York, NY, 2014. Association for Computing Machinery. doi: 10.1145/2597917.2597939.Google Scholar
Jones, T. and Benjamin, S.. QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator. Quantum Science and Technology, 5(3):034012, 2020. doi: 10.1088/2058-9565/ab8506.CrossRefGoogle Scholar
Jones, T., Brown, A., Bush, I., and Benjamin, S. C.. Quest and high performance simulation of quantum computers. Scientific Reports, 9(1):10736, 2019. doi: 10.1038/s41598-019-47174-9.CrossRefGoogle ScholarPubMed
Karp, R. M. Reducibility among combinatorial problems. In: Miller, R. E., Thatcher, J. W., and Bohlinger, J. D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series. Springer, Boston, MA, 1972. doi: 10.1007/978-1-4684-2001-2_9Google Scholar
Kaye, P., Laflamme, R., and Mosca, M.. An Introduction to Quantum Computing. Oxford University Press, 2007.Google Scholar
Kempe, J. Quantum random walks: An introductory overview. Contemporary Physics, 44(4):307327, 2003. doi: 10.1080/00107151031000110776.CrossRefGoogle Scholar
Khammassi, N., Ashraf, I., Fu, X., Almudever, C. G., and Bertels, K.. QX: A high-performance quantum computer simulation platform. In Design, Automation Test in Europe Conference Exhibition, 2017, pp. 464469, 2017. doi: 10.23919/DATE.2017.7927034.CrossRefGoogle Scholar
Khammassi, N., Guerreschi, G. G., Ashraf, I., et al. cQASM v1.0: Towards a common quantum assembly language. 2018. https://doi.org/10.48550/arXiv.1805.09607.CrossRefGoogle Scholar
Kitaev, A. Quantum measurements and the Abelian Stabilizer Problem. doi: arXiv:quant-ph/9511026.Google Scholar
Kitaev, A. Y., Shen, A. H., and Vyalyi, M. N.. Classical and Quantum Computation. American Mathematical Society, 2002.10.1090/gsm/047CrossRefGoogle Scholar
Kleinmann, M., Kampermann, H., Meyer, T., and Bruß, D.. Physical purification of quantum states. Physical Review, A 73, 062309, 8 June 2006.Google Scholar
Kliuchnikov, V., Bocharov, A., Roetteler, M., and Yard, J.. A framework for approximating qubit unitaries, 2015. arXiv:1510.03888v1 [quant-ph].Google Scholar
Knill, E. Conventions for quantum pseudocode. Technical Report from Los Alamos National Laboratory, 1996. doi: 10.2172/366453.CrossRefGoogle Scholar
Knuth, D. E. Computer science and its relation to mathematics. The American Mathematical Monthly, 81(4):323343, 1974. doi: 10.1080/00029890.1974.11993556.CrossRefGoogle Scholar
Landauer, D. Wikipedia: Landauer’s principle, 1973. http://en.wikipedia.org/wiki/Landauer’s%27s%95principle. Accessed: January 9, 2021.Google Scholar
Lattner, C. and Adve, V.. LLVM: A compilation framework for lifelong program analysis & transformation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization, CGO ’04, p. 75, 2004. IEEE Computer Society.Google Scholar
Lawler, E. L. A note on the complexity of the chromatic number problem. Information Processing Letters, 5 (3):6667, 1976, doi: 10.1016/0020-0190(76)90065-X.CrossRefGoogle Scholar
Leao, T. Shor’s algorithm in Qiskit. http://github.com/ttlion/ShorAlgQiskit, 2021. Accessed: February 10, 2021.Google Scholar
Liu, J, Bello, L., and Zhou, H.. Relaxed peephole optimization: A novel compiler optimization for quantum circuits. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 2021, 301314, doi: 10.1109/CGO51591.2021.9370310.Google Scholar
Lloyd, S., Mohseni, M., and Rebentrost, P.. Quantum principal component analysis. Nature Physics, 10, 631633, 2014.10.1038/nphys3029CrossRefGoogle Scholar
Lucas, A. Ising formulations of many NP problems. Frontiers in Physics, 2, 2014. doi: 10.3389/fphy.2014.00005.CrossRefGoogle Scholar
Magniez, F., Santha, M., and Szegedy, M.. Quantum algorithms for the triangle problem. In Proceedings of SODA’05, pp. 11091117, 2005.Google Scholar
Maldonado, T. J., Flick, J., Krastanov, J., et al. Error rate reduction of single-qubit gates via noise-aware decomposition into native gates. Scientific Republic 12, 6379 (2022). doi: 10.1038/s41598-022-10339-0.Google ScholarPubMed
Markov, I. L., Fatima, A., Isakov, S. V., and Boixo, S.. Quantum supremacy is both closer and farther than it appears, 2018. arXiv:1807.10749v3 [quant-ph].Google Scholar
McKeeman, W. M. Peephole optimization. Communications of the ACM, 8(7):443444, 1965. doi: 10.1145/364995.365000.CrossRefGoogle Scholar
Mermin, N. D. What’s wrong with this pillow? Physics Today, 42(4):9, 1989. doi: 10.1063/1.2810963.CrossRefGoogle Scholar
Mermin, M. D. Quantum Computer Science: An Introduction. Cambridge University Press, 2007. doi: 10.1017/CBO9780511813870.CrossRefGoogle Scholar
Microsoft Q#. http://docs.microsoft.com/en-us/quantum/, 2021. Accessed: February 10, 2021.Google Scholar
Microsoft QDK Simulators. http://docs.microsoft.com/en-us/azure/quantum/user-guide/machines/, 2021. Accessed: February 10, 2021.Google Scholar
Mosca, M. Quantum algorithms, 2008. arXiv:0808.0369v1 [quant-ph].CrossRefGoogle Scholar
Möttönen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M.. Transformation of quantum states using uniformly controlled rotations, 2004. arXiv:0407010 [quant-ph], arxiv.org/abs/quant-ph/0407010.Google Scholar
Möttönen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M.. Quantum Circuits for General Multiqubit Gates. Physical Review Letters, 93:13, 2004 doi: 10.1103/physrevlett.93.130502.CrossRefGoogle ScholarPubMed
Murali, P., Linke, N. M., Martonosi, M., et al. Full-stack, real-system quantum computer studies: Architectural comparisons and design insights, Association for Computing Machinery, New York, NY, USA 2019. doi: 10.1145/3307650.3322273.CrossRefGoogle Scholar
Musk, D. R. A comparison of quantum and traditional Fourier transform computations, Computing in Science & Engineering, 22(6):103110, 1 Nov.–Dec. 2020, doi: 10.1109/MCSE.2020.3023979.CrossRefGoogle Scholar
Nam, Y., Ross, N. J., Su, Y., Childs, A. M., and Maslov, D.. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information, 4(1), 2018. doi: 10.1038/s41534-018-0072-4.CrossRefGoogle Scholar
Nickolls, J., Buck, I., Garland, M., and Skadron, K.. Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for? Queue, 6(2):4053, 2008. doi: 10.1145/1365490.1365500.CrossRefGoogle Scholar
Nielsen, M. A. and Chuang, I. L.. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 10th ed. 2011.Google Scholar
Norsen, T. Foundations of Quantum Mechanics. Springer International Publishing, 2017.10.1007/978-3-319-65867-4CrossRefGoogle Scholar
Oak Ridge National Laboratory. Summit Supercomputer. www.olcf.ornl.gov/summit/, 2021. Accessed: February 2, 2021.Google Scholar
Ömer, B. QCL – A programming language for quantum computers, Unpublished Master’s thesis, Technical University of Vienna, 2000. http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf.Google Scholar
Ömer, B. Classical concepts in quantum programming. International Journal of Theoretical Physics, 44(7):943955, 2005. doi: 10.1007/s10773-005-7071-x.CrossRefGoogle Scholar
Paler, A., Wille, R., and Devitt, S. J.. Wire recycling for quantum circuit optimization. Physical Review A, 94(4), 2016. doi: 10.1103/physreva.94.042337.CrossRefGoogle Scholar
Pan, F. and Zhang, P.. Simulating the Sycamore quantum supremacy circuits, 2021. arXiv:2103.03074v1 [quant-ph].Google Scholar
Patel, R. B., Ho, J., Ferreyrol, F., Ralph, T. C., and Pryde, G. J.. A quantum Fredkin gate. Science Advances, 2(3), 2016. doi: 10.1126/sciadv.1501531.CrossRefGoogle ScholarPubMed
Pati, A. K. and Braunstein, S. L.. Impossibility of deleting an unknown quantum state. Nature, 404(6774):164165, 2000 doi: 10.1038/404130b0.CrossRefGoogle ScholarPubMed
Patra, B., van Dijk, J. P. G., Subramanian, S., et al. A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4x32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers. In 2020 IEEE International Solid-State Circuits Conference – (ISSCC), pp. 304306, 2020. doi: 10.1109/ISSCC19947.2020.9063109.CrossRefGoogle Scholar
Pednault, E., Gunnels, J. A., Nannicini, G., Horesh, L., and Wisnieff, R.. Leveraging secondary storage to simulate deep 54-qubit Sycamore circuits, 2019. arXiv:1910.09534.Google Scholar
Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. London: Vintage, 2005. ISBN: 9780593315309 http://books.google.com/books?id=SkwiEAAAQBAJ.Google Scholar
Perdomo, O. N. Castaneda, and Vogeler, R.. Preparation of 3-qubit states. arXiv:2201.03724 [quant-ph].Google Scholar
Perdomo, O. Preparation of a 2-qubit state. http://youtu.be/LIdYSs-rE-o. Accessed: March 26, 2024.Google Scholar
Perdomo, O. Preparation of a 3-qubit state. http://youtu.be/Kne0Vq7gyzQ?si=-kXNUpNYSI8OORxD. Accessed: March 26, 2024.Google Scholar
Peruzzo, A., McClean, J., Shadbolt, P., et al. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, 2014. doi: 10.1038/ncomms5213.CrossRefGoogle ScholarPubMed
Piveteau, Christoph and Sutter, David, Circuit knitting with classical communication. IEEE Transactions on Information Theory, (70) 27342745.10.1109/TIT.2023.3310797CrossRefGoogle Scholar
Plenio, M., Virmani, S. An introduction to entanglement measures. arXiv:quant-ph/0504163, 2006.10.1002/9783527618637.ch10CrossRefGoogle Scholar
Preskill, J. Quantum computing and the entanglement frontier, 2012. arXiv:1203.5813v3 [quant-ph].Google Scholar
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018. doi: 10.22331/q-2018-08-06-79.CrossRefGoogle Scholar
PSI Online. PSI. http://psilang.org/, 2021. Accessed: February 10, 2021.Google Scholar
Qiskit. IBM qiskit simulators. http://qiskit.org/documentation/tutorials/simulators/1_aer_provider.html, 2021. Accessed: February 10, 2021.Google Scholar
Quantiki. List of simulators. http://quantiki.org/wiki/list-qc-simulators, 2021. Accessed: February 10, 2021.Google Scholar
Quantum Programming http://en.wikipedia.org/wiki/Quantum_programming Accessed: July 27, 2024.Google Scholar
Quipper Online. Quipper. www.mathstat.dal.ca/~selinger/quipper/, 2021. Accessed: February 10, 2021.Google Scholar
Regev, O. An efficient quantum factoring algorithm, arXiv, quant-ph, 2308.06572, 2024.Google Scholar
Rios, F. and Selinger, P.. A categorical model for a quantum circuit description language (extended abstract). Electronic Proceedings in Theoretical Computer Science, 266:164178, 2018. doi: 10.4204/eptcs.266.11.CrossRefGoogle Scholar
Rivest, R. L., Shamir, A., and Adleman, L.. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21:120126, 1978.10.1145/359340.359342CrossRefGoogle Scholar
Rolf, L. Is quantum mechanics useful? Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 353:367376, 1995. doi: 10.1098/rsta.1995.0106.Google Scholar
Ross, N. J. Algebraic and logical methods in quantum computation, 2017. http://arxiv.org/abs/1510.02198.Google Scholar
Ross, N. J. and Selinger, P.. Optimal ancilla-free Clifford+T approximation of z-rotations. Quantum Information and Computation, 1112:901953, 2016.CrossRefGoogle Scholar
Ross, N. J. and Selinger, P.. Exact and approximate synthesis of quantum circuits. www.mathstat. dal.ca/~selinger/newsynth/, 2021. Accessed: February 10, 2021.Google Scholar
Rudiak-Gould, B. The sum-over-histories formulation of quantum computing. arXiv e-prints, art. quant-ph/0607151, 2006.Google Scholar
Scarini, V. et al. Quantum cloning. Reviews of Modern Physics. doi: 10.1103/RevModPhys.77.1225.CrossRefGoogle Scholar
Shende, V. V., Markov, I. L., and Bullock, S. S.. Minimal universal two-qubit controlled-NOT-based circuits. Physical Review A, 69(6):062321, 2004. doi: 10.1103/physreva.69.062321.CrossRefGoogle Scholar
Shor, P. W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124134, 1994. doi: 10.1109/SFCS.1994.365700.CrossRefGoogle Scholar
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Physics Review A, 52:R2493R2496, 1995. doi: 10.1103/PhysRevA.52.R2493.CrossRefGoogle ScholarPubMed
Simon, D. On the power of quantum computation. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 116123, 1994. doi: 10.1109/SFCS.1994.365701.CrossRefGoogle Scholar
Smelyanskiy, M., Sawaya, N. P. D., and Aspuru-Guzik, A.. qHiPSTER: The quantum high performance software testing environment, 2016. arXiv:1601.07195v2 [quant-ph].Google Scholar
Soeken, M., Frehse, S., Wille, R., and Drechsler, R.. RevKit: An open source toolkit for the design of reversible circuits. In Reversible Computation 2011, vol. 7165 of Lecture Notes in Computer Science, pp. 6476, 2012. RevKit is available at www.revkit.org.10.1007/978-3-642-29517-1_6CrossRefGoogle Scholar
Soeken, M., Riener, H., Haaswijk, W., et al. The EPFL logic synthesis libraries, 2019. doi: arXiv:1805.05121v2.Google Scholar
Soltan, A., Ahmad, Z., Mamat, A., and Hishamuddin, Z., A quantum algorithm for minimal spanning tree, Proceedings of the International Symposium on Information Technology, 2008. doi: 10.1109/ITSIM.2008.4632038.CrossRefGoogle Scholar
Steane, A. Multiple particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):25512577, 1996. doi: 10.1098/rspa.1996.0136.Google Scholar
Steiger, D. S., Häner, T., and Troyer, M.. ProjectQ: An open source software framework for quantum computing. Quantum, 2:49, 2018. doi: 10.22331/q-2018-01-31-49.CrossRefGoogle Scholar
Strang, G. Introduction to Linear Algebra. MIT Press, 2016.Google Scholar
Svore, K. M., Aho, A. V., Cross, A. W., Chuang, I., and Markov, I. L.. A layered software architecture for quantum computing design tools. Computer, 39(1):7483, 2006. doi: 10.1109/MC.2006.4.CrossRefGoogle Scholar
Tang, W., Tomesh, T., Suchara, M., Larson, J., and Martonosi, M.. CutQC: Using small Quantum computers for large Quantum circuit evaluations. 2021. doi: 10.1145/3445814.3446758.CrossRefGoogle Scholar
Terhal, B. DS-1999-04: Quantum Algorithms and Quantum Entanglement Thesis, University of Amsterdam:17, 1999. URI: http://eprints.illc.uva.nl/id/eprint/2012.Google Scholar
van Tonder, A. A lambda calculus for quantum computation. SIAM Journal on Computing, 33(5):11091135, 2004. doi: 10.1137/s0097539703432165.CrossRefGoogle Scholar
Tsirelson (Cirel’son), B. S. (1980). Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics, 4(2), 93100. doi: 10.1007/BF00417500.Google Scholar
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.. Attention Is All You Need. ISBN: 9781510860964.Google Scholar
Vidick, W. Introduction to Quantum Cryptography. Cambridge University Press, 2023.10.1017/9781009026208CrossRefGoogle Scholar
Wang, S., Baksi, A., and Chattopadhyay, A.. A Higher radix architecture for quantum carry-lookahead adder. Nature, http://arxiv.org/abs/2304.02921.Google Scholar
Whitfield, J. D., Biamonte, J., and Aspuru-Guzik, A.. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109(5):735750, 2011. doi: 10.1080/00268976.2011.552441.CrossRefGoogle Scholar
Wikipedia. Constraint graphs. http://en.wikipedia.org/wiki/Constraint_graph, 2024a Accessed: September 3, 2024.Google Scholar
Wikipedia. ECC, Error correction code memory. http://en.wikipedia.org/wiki/ECC_memory, 2021b. Accessed: February 10, 2021.Google Scholar
Wikipedia. Extended Euclidean algorithm. http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm, 2021c. Accessed: February 10, 2021.Google Scholar
Wikipedia. Gradient descent. http://en.wikipedia.org/wiki/Gradient_descent, 2021d. Accessed: February 10, 2021.Google Scholar
Wikipedia. KD-Trees. http://en.wikipedia.org/wiki/K-d_tree, 2021a. Accessed: February 10, 2021.Google Scholar
Wikipedia. Shor’s algorithm. http://en.wikipedia.org/wiki/Shor%27s_algorithm, 2024f. Accessed: September 7, 2024.Google Scholar
Wikipedia. Euclidean algorithm. http://en.wikipedia.org/wiki/Euclidean_algorithm, 2024g. Accessed: September 7, 2024.Google Scholar
Williams, C. P. Explorations in Quantum Computing. Springer-Verlag, London, 2011. doi: 10.1007/978-1-84628-887-6.CrossRefGoogle Scholar
Wilson, E., Singh, S., and Mueller, F.. Just-in-time quantum circuit transpilation reduces noise. IEEE International Conference on Quantum Computing and Engineering. 2020. doi: 10.1109/QCE49297.2020.00050.CrossRefGoogle Scholar
Wootters, W. K. and Zurek, W. H.. A single quantum cannot be cloned. Nature, 299(5886):802803, 1982. doi: 10.1038/299802a0.CrossRefGoogle Scholar
Xue, X., Patra, B., van Dijk, J. P. G., et al. Cmos-based cryogenic control of silicon quantum circuits. Nature, 593(7858):205210, 2021. doi: 10.1038/s41586-021-03469-4.CrossRefGoogle ScholarPubMed
Morrell, H. Jr., Zaman, A., and Wong, H. Y.. A step-by-step HHL algorithm walkthrough to enhance understanding of critical quantum computing concepts. IEEE Access. 2023. doi: 10.1109/access.2023.3297658.CrossRefGoogle Scholar
Zhang, Y., Cincio, L., Negre, C., et al. Variational quantum eigensolver with reduced circuit complexity. Nature. 2022. doi: 10.1038/s41534-022-00599-z.CrossRefGoogle Scholar
Znidaric, M., Giraud, O., and Georgeot, B.. Optimal number of controlled-NOT gates to generate a three-qubit state. American Physical Society. 77(3):032320, 2008. doi: 10.1103/PhysRevA.77.032320.Google Scholar

Accessibility standard: WCAG 2.1 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert Hundt, Google
  • Book: Quantum Computing for Programmers
  • Online publication: 24 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009548519.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert Hundt, Google
  • Book: Quantum Computing for Programmers
  • Online publication: 24 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009548519.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert Hundt, Google
  • Book: Quantum Computing for Programmers
  • Online publication: 24 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009548519.019
Available formats
×