Published online by Cambridge University Press: 24 July 2025
As we realize that random walks, chain reactions, and recurrent events are all Markov chains, i.e., correlated processes without memory, in this chapter we derive a general theory, including classification and properties of the single states and of chains. In particular, we focus on the building blocks of the theory, i.e., irreducible chains, presenting and proving a number of fundamental and useful theorems. We end up deriving the balance equation for the limit probability and the approach to the limit for long times, developing and applying the Perron–Frobenius theory for non-negative matrices and the spectral decomposition for non-Hermitian matrices. Among the applications of the theory, we underline the sorting of Web pages by search engines.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.